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Abstract: Early distribution of COVID-19 vaccines was largely driven by population size and did
not account for COVID-19 prevalence nor location characteristics. In this study, we applied an
optimization framework to identify distribution strategies that would have lowered COVID-19
related morbidity and mortality. During the first half of 2021 in the state of Missouri, optimized
vaccine allocation would have decreased case incidence by 8% with 5926 fewer COVID-19 cases,
106 fewer deaths, and 4.5 million dollars in healthcare cost saved. As COVID-19 variants continue
to be identified, and the likelihood of future pandemics remains high, application of resource
optimization should be a priority for policy makers.
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1. Introduction

The COVID-19 pandemic has had a devastating effect worldwide. In the U.S. alone,
by the end of 2020 there were more than 20 million reported infections, greater than
1.1 million related hospitalizations, and nearly 364,000 related deaths [1]. As demand for
beds, medical personnel, and equipment quickly outpaced supply, hospitals turned away
the ill and suspended preventive and elective procedures [2,3]. While multiple COVID-19
vaccinations were developed at unprecedented speeds and made available to general adult
U.S. populations by early 2021, challenges in the distribution of limited vaccine supplies
quickly arose [4–6].

In the U.S., states received the bulk of vaccine supplies from the federal government
in an amount typically proportional to their population size [7]. Each state was tasked
with downstream distribution to residents and local agencies. Although consumer vaccine
distribution in most states was preliminarily undertaken in phases, based on infection
susceptibility and likelihood [8,9], this, and subsequent distribution to the general adult
population, was largely based on geographic population size. Though a local distribution
method based on population size appealed to a sense of equality, it negated a typically more
accepted needs-based approach. Currently, the possibility of optimal vaccine allocation
during the early stages of a pandemic is not well understood.

Due to the infectious mode of respiratory person-to-person transmission, location
and population mobility continue to play a key role in the spread of COVID-19 [10]. Pop-
ulation mobility patterns inform risk of infectious disease exposure as well as highlight
the varying and local non-pharmaceutical prevention mandates implemented during the
pandemic. These mandates included limited business hours, reduced public location ca-
pacity, and stay-at-home orders. The time populations spend at locations where people
are likely to interact—such as restaurants, health provider offices, grocery stores, and
religious institutions or places of worship—are a dominant factor that has shaped this
pandemic [11–14]. These factors need to be included in disease spread prediction models,
and further, guide vaccination distribution methods. Integrating classical models of infec-
tious disease transmission into a vaccine allocation optimization framework is challenging.
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In typical compartmental models, the equations governing transitions among classes are
non-convex. Incorporating these transitions into an optimization model results in computa-
tionally challenging problems. In most cases, the allocations returned by state-of-the-art
optimization techniques carry no guarantee of optimality [9]. Further, the complexity of
such methods restricts their accessibility and use in practice, an important requirement as
COVID-19 continues to spread, causing morbidity and mortality.

The purpose of this study was to identify optimal spatial allocation methods for
COVID-19 vaccines with the objective of minimizing reported COVID-19 cases. Utilizing
GPS data from smart devices, we incorporated mobility and location factors into a mixed-
effect Poisson model predicting the spread of COVID-19 infections. When placed in an
optimization framework, the resulting model is a convex math program, readily solvable
through widely available software. By showing how to overcome major obstacles to better
vaccine allocation, the methods we propose are both timely and practical.

2. Materials and Methods
2.1. Sample

This study utilized an econometric, repeated measure design with the 115 counties
comprising Missouri as subjects, each with 26 weekly observations from January 2021 to
July 2021. This study period was chosen to coincide with recommendation and release of
vaccines to adult residents [8]. While this study was geographically limited to the state of
Missouri, the location provides good insight to the patterns that were occurring in other
states as well: having an urban and rural composition and diverse non-pharmaceutical
COVID-19 mitigation strategies during this period of time across some counties in the state.
Data used for the study were collected from three primary sources.

2.2. Measures

To build and assess vaccine allocation scenarios, the most appropriate outcome vari-
able for this study was new weekly reported cases of COVID-19 per county, collected from
the Missouri Department of Health and Senior Services [15]. Weekly observations, rather
than daily case counts, limited day-of-the-week reporting bias and more readily included
retroactive data corrections.

Weekly vaccine uptake, for all available manufactured vaccines, among county resi-
dents was used as the study’s primary predictor and was collected from publicly available
Missouri data [16]. COVID-19 vaccine uptake was divided by two to reflect the two-dose
vaccine requirement needed to reach recommended immunological protection [15].

Aggregated and anonymized GPS data were collected from the data management
firm Safegraph, LLC. This mobility data consisted of a rotating sample of 5–6% of the
U.S. population who have consented to share data detailing time and location of visits
outside the home [17]. The data were stratified according to county of residence and
then temporally across types of locations visited. Locations were organized by the North
American Industrial Classification System. Approximately 250 GB of uncompressed data
were extracted from Safegraph, LLC prior to cleaning, organizing, and aggregating on the
county level. We leveraged prior research to identify locations where risk of COVID-19
exposure would likely increase. These locations included restaurants/bars, health provider
offices, grocery stores, education facilities, senior living facilities, retail locations, and
religious institutions [11–14]. Additional details regarding mobility data collection have
been published elsewhere [18,19].

We also estimated the number of COVID-19-related deaths and hospital costs related
to COVID-19 for use in analysis. These figures were calculated by using the number of
new COVID-19 cases along with the average national COVID-19 case fatality rate, average
national rate of hospitalizations due to COVID-19 infections, and hospital treatment costs
of COVID-19 at time of respective observations [1,20].
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Statistical Analysis and Optimization

Statistical analysis of the data was completed in three phases. First, descriptive statis-
tics identified temporal trends and variability of COVID-19 infections across Missouri
counties. Second, a mixed-effect generalized linear regression characterized the tempo-
ral correlation between COVID-19 vaccine distribution and COVID-19 case counts. The
number of new COVID-19 cases was fit with a Poisson distribution to accommodate the
non-negative count nature of the model outcome. A random effect was added to account
for the nested nature of observations within the 115 counties. Fixed effects included average
time spent at grocery stores, restaurants and bars, retail stores, healthcare delivery and
service locations, education facilities, and senior living facilities per week per resident
to reflect the variation in risk inherent among these locations. Further, we included the
average distance traveled when residents visited locations outside of their home. Lastly,
we included the estimated total population of each county.

In the last phase of this analysis, the regression model was combined with a prescrip-
tive optimization model for vaccine allocation. Given a limited supply of vaccines arriving
across the study period, we allocated doses to Missouri counties such that the expected
number of infections was minimized. The optimization utilized the Poisson model of dis-
ease spread to forecast case prevalence. We detail the optimization model and optimization
software used in the Supplemental Material [21].

To depict the effects of optimization, we devised nine scenarios by varying propor-
tions of actual vaccine supply and resident mobility (time and distance traveled). Each
scenario held supply and mobility factors at their actual levels, reduced them by 50%, or
increased them by 100%. These scenarios provided different sets of mobility data and
supply schedules to the optimization, but held the fixed and random effects constant. In
addition to identifying the minimum number of expected new COVID-19 cases in each
scenario, we connected these figures to the expected number of COVID-19 related deaths
and to expected hospital costs.

3. Results

Across the 115 counties of Missouri, there are 6,154,913 residents. Of those, 22.4%
(n = 1,378,701) are under 18 years of age, 54.2% (n = 3,335,963) are 19-64 years of age, and
17.6% (n = 1,083,264) are older than 65 years. The population size for each county is depicted
in Figure 1A. The majority of the state’s residents are white, while 11.8% (n = 726,280)
identify as Black/African American and 4.7% (n = 289,281) as Hispanic/Latino.

During the study period, a total of 173,656 COVID-19 cases were reported among
Missouri counties for an average of 58.7 cases per week per county (SD 220.2). At the
end of the study (July 2021), counties across the state had an average vaccination rate of
26.8% (SD 7.3%). Residents spent an average of 113.4 min (SD 64.2) when visiting senior
living facilities, 99.4 min (SD 54.3) at healthcare facilities, 87.3 min (SD 26.2) at educational
facilities, 43.1 min (SD 63.1) at grocery and food stores, 38.5 min (SD 16.1) at retail locations,
and 37.2 min (SD 17.4) at restaurants and bars. Overall, residents traveled an average of
21.8 km (SD 13.3) to reach these locations during the study period.

Differences in county population sizes are depicted in the quantile map in Figure 1A.
The quantile maps in Figures 1B and 1C show differences in average time at the specified
locations and average distance traveled, respectively. Figure 1D displays the number of
vaccines distributed among all counties at each week of the study, peaking at 354,894
during week 14.

Results of the mixed-effect regression, which was designed to predict number of
COVID-19 cases, are detailed in Table 1 with the estimated variable coefficients expressed
in a log link response. Each variable included in the model was shown to be significantly
associated with the response variable. The cumulative percent of vaccinated individuals
increased and the number of new COVID-19 cases decreased across the state significantly.
COVID-19 case rates increased significantly as time spent at any commercial locations was



Vaccines 2023, 11, 64 4 of 9

documented. Each county’s population and their higher average distance traveled away
from home was significantly associated with to higher case counts.
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Figure 1. Descriptive quantile maps of (A) Missouri county populations (as of 2019), (B) average
visit time (minutes) spent at a location outside the home (Jan 2021–July 2021), (C) average distance
(kilometers) residents traveled to visit a location outside the home (Jan 2021–July 20201), (D) weekly
number of COVID-19 vaccines distributed among Missouri counties (Jan 2021–July 2021).

Table 1. Fixed effect estimates predicting weekly COVID-19 cases across Missouri Counties from
January 2021 to July 2021.

Coefficient
Estimate †

95% Confidence
Interval p-Value

% Vaccinated −2.488 −2.552, −2.423 <0.001
Time spent at grocery/food stores (min) 0.001 0.000, 0.001 <0.001
Time spent at restaurants/bars (min) 0.014 0.013, 0.015 <0.001
Time spent at retail locations (min) 0.016 0.015, 0.016 <0.001
Time spent at healthcare locations (min) 0.004 0.003, 0.004 <0.001
Time spent at education locations (min) 0.001 0.011, 0.012 <0.001
Time spent at senior living facility (min) 0.004 0.004, 0.004 <0.001
Distance traveled from residence (km) 0.371 0.356, 0.385 <0.001
Population ‡ 0.912 0.709, 1.114 <0.001

† log link response, ‡ scaled around minimum and maximum values.
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For each of the nine mobility-supply scenarios, Figure 2 compares the performance of
optimal allocation against a population-based allocation, where vaccines were distributed
only according to population size. In the 100% mobility and 100% supply scenario (Figure 2,
Scenario 5), the state of Missouri’s actual allocation policy was used as a second benchmark.
In this scenario, we predict spatial optimization of vaccine allocation would have averted
72,781 COVID-19 cases, averted 1301 COVID-19 related deaths, and saved $54,893,389
in COVID-19 related hospital costs. The optimal vaccine allocation was 9 percentage
points more effective, based on averted cases, than the population-based allocation and
8 percentage points more effective than Missouri’s actual allocation. The largest disparity
between optimized allocation and population-based allocation was seen when resident
mobility was doubled and vaccine supply was halved (Figure 2, Scenario 7). Under these
parameters, optimized allocation averted twice as many cases as the population-based
allocation method. Even under the most favorable parameters, with mobility halved and
vaccine supply doubled (Figure 2, Scenario 3), the number of cases averted by the optimal
allocation was 6 percentage points higher than the number averted by the population-
based allocation.
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Figure 2. Effectiveness of population-based vaccine allocation and Missouri state allocation compared
to spatially optimized allocation under 9 different scenarios of varying geographic mobility.

Finally, we examined the value of vaccines across time in an optimal allocation policy.
For each of the 9 scenarios, Figure 3 displays the dual variables associated with weekly
supply constraints (3). Due to large differences in dual values, we display the figures
in three charts with identical horizontal scales but with different vertical scales for each
mobility level (50%, 100%, 200%). A value in Figure 3 can roughly be interpreted as the
decrease in case count that would have resulted from one additional vaccine available for al-
location during a particular week. This information is a unique byproduct of mathematical
optimization and cannot be obtained through other means.
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and supply scenarios.

4. Discussion

The purpose of this study was to understand the impact of spatially optimal COVID-19
vaccine allocation in Missouri. Results suggest optimal allocation would have markedly
improved health outcomes, reducing the number of cases by 8% during a 6 month period
of time. These findings suggest that including variables that increase risk of an infec-
tious disease more accurately will reduce morbidity and mortality. While mobility data
had not been widely used prior to the COVID-19 pandemic to inform public health and
healthcare efforts, they have been found to be especially useful in predicting a respiratory
infectious disease.

This study also found that across all scenarios in Figure 3, vaccines were generally
more valuable when they were allocated earlier rather than later. For example, when
mobility was 50% and supply was 200% (Figure 2, Scenario 3), an additional vaccine had
more than 12 times the impact in early January 2021 than it would have had toward the end
of June 2021. This difference increased to more than 73 times when mobility was 200% and
supply was 50% (Figure 2, Scenario 7). Because COVID-19 infections grew at an exponential
rate, a given number of vaccines was more effective at slowing disease spread in the early
parts of a pandemic than the same amount would have been later. The kinks in each series
are related to variations in the supply schedule. When the number of vaccines available for
allocation during a particular week was lower than the supply the week before and the
week after, additional vaccines during that week were more valuable.

Second, across all time periods, the value of a vaccine increased substantially as
mobility of the population increased. For instance, when supply was at 50%, the dual
variable corresponding to the week-one supply constraint increased by more than 4 times
when mobility moved from 50% to 100%, then by an additional 90 times when mobility
increased to 200 percent. That is more than a 38,000% increase from low to high mobility.
This enormous difference points to the importance of mobility in curbing a pandemic. It is
not that a vaccine’s ability to inoculate somehow increases as individuals spend more time
outside of their residences and venture further away from their homes. Rather, as Figure 2
shows, the number of infections to be averted is orders of magnitude higher, and thus the
potential for a vaccine to decrease disease spread is also much higher.

While other optimization models primarily utilized population age as a means to
allocate vaccines [22–24], this study relies on mobility in rural, suburban, and urban
communities. Including these factors in the vaccine optimization model allows for stronger
predictive inputs that inform the output far more than the allocation method used in
Missouri, and in many other states at the time of allocation. Though the literature on
COVID-19 vaccine allocation is young, the same realism-tractability challenge faced by
many fields is present here. Optimization models that integrate location, mobility, and
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disease dynamics are better representations of reality than those that do not, but they are
significantly more difficult to solve [24,25].

Our work considered the roles of mobility and location in disease progression and
also provided guidance for optimal vaccine allocation policies. We demonstrated how
optimal policies could have averted infections, deaths, and hospital costs in the Missouri
during the first half of 2021, a period when vaccine supplies were low, and COVID-19
infections continued to increase. Across a range of scenarios, we showed the potential for
an optimal allocation of vaccines to improve upon policies based on population size. We
found that the benefits of optimal allocation increased dramatically in scenarios with higher
mobility and fewer vaccines. However, even when mobility was low, and supplies were
more abundant, optimal allocation of vaccines still led to reductions in case rates, fatalities,
and hospital costs.

To conceptualize findings and propel future research, several study limitations were
identified. Due to data availability, this study worked under the assumption that distribu-
tion of vaccines equated to administration of vaccines. However, news sources revealed
that at times vaccines go unused [26,27]. In addition to including geographic mobility,
it may be beneficial for future studies to consider collective community beliefs and atti-
tudes surrounding likelihood of vaccine uptake. While this study also gives an estimate of
COVID-19 deaths and hospitalization costs, these values are based on national averages
and, like infection rates, are likely a product of geographic variation [28,29]. Further, in-
fections may have been unreported during the study period. Additional studies would
benefit from deeper examination of these variables and the role they play in optimal vaccine
allocation policies.

Our work provides an important public health tool for the future. In the face of new
COVID-19 variants, our analysis can be used to guide the distribution of limited supplies
of resources, as well as to prioritize communities that may be affected earlier than others
due to mobility. Further, as we prepare for the possibility of other pandemics, this research
lays a foundation for the integration of important environmental factors into predictive
disease models and prescriptive optimization tools.
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Supplemental Material  
Here we detail how the regression model was combined with a prescriptive optimi-

zation model for vaccine allocation. Given a limited supply of vaccines arriving across 
weeks 1, 2, . . ., T=26, we allocated doses such that the expected number of infections across 
counties 1, 2, . . ., K=115 was minimized. During each week 𝑡, we chose 𝑣௧௞, a number 
between zero and one representing a proportion of the population in county k. Letting 𝑁௞ 
be the population size at county k, we allocated 𝑁௞𝑣௧௞ vaccines to county k during week t. 
We let 𝑑௧ be the number of doses scheduled to arrive at the beginning of week t and as-
sumed leftover inventory of vaccines could be carried from one week to the next. 

The optimization utilized the Poisson model of disease spread to forecast case prev-
alence. We linked decision variables to the regression equation via the function 𝑣௞ሺ𝑡ሻ =∑ 𝑣௧ᇲ௞௧௧ᇲୀଵ , the proportion of the population at location k vaccinated from the beginning of 
the study period through week t. The optimization model utilized the above-described 
covariates and their effects. Let log 𝐸 ሾ𝑌௧௞|𝑥௧௞ሿ = 𝑎௧௞ + β𝑣௞ሺ𝑡ሻ be the Poisson regression 
equation predicting the log of the expected number of cases 𝑌௧௞ during week t in county 
k given covariate vector 𝑥௧௞, where β is the vaccination effect and 𝑎௧௞ represents the fixed 
and random effects associated with the remaining covariates. The predicted number of 
cases was obtained by exponentiation. 

The vaccine allocation problem was modeled as the following math program: 

Minimize: 𝑓ሺ𝑥ሻ = ෍ ෍ exp ቀ𝑎௧௞ + 𝛽𝑣௞ሺ𝑡ሻቁ௄
௞ୀଵ

்
௧ୀଵ  (1) 

Subject To: 2 ෍ ෍ 𝑁௞𝑣௧ᇲ௞ ൑ ෍ 𝑑௧ᇲ௧
௧ᇲୀଵ

௄
௞ୀଵ ,  𝑡 = 1,  2, … , 𝑇௧

௧ᇲୀଵ  (2) 

 𝑣௞ሺ𝑇ሻ ൑ 1, 𝑘 = 1,2, … , 𝐾 (3) 

 𝑣௧௞ ൒ 0, 𝑡 = 1,2, … , 𝑇, 𝑘 = 1,2, … , 𝐾 (4) 

 
The objective function (1) was the expected total number of infections across all 

weeks and locations. Constraints (2) limited vaccine allocation in week t to the total num-
ber of vaccines available in that week, which consisted of new deliveries plus any vaccines 
not allocated during previous weeks. Constraints (2) also required two vaccinations per 
individual to be fully immunized. Constraints (3) limited the vaccines allocated to each 
county to be less than or equal to the county’s population. Constraints (4) required non-
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negative allocations. In practice, when 𝑁௞𝑣௧௞ vaccines is not a whole number, then round-
ing down to the nearest integer resulted in a feasible allocation. 

We solved all instances of problem (1)-(4) with the Knitro solver. Because the math 
program is convex, any locally optimal allocation will also be a globally optimal alloca-
tion, meaning a better allocation does not exist [9]. To show that problem (1)-(4) is a convex 
program, the objective function must be a convex function and the constraints must form 
a convex set. As the constraints are all linear, they trivially form a convex set. We demon-
strate that objective function f is convex by showing that the Hessian matrix, which con-
tains all second partial derivatives of f, is positive definite. We begin with first partial de-
rivatives. The partial derivative of f with respect to 𝑣௧௞ is 𝜕𝑓𝜕𝑣௧௞ =  ෍ 𝛽 𝑒𝑥𝑝்

௧ሚୀ௧ ൫ 𝑎௧ሚ௞ +  𝛽𝑣௞ሺ𝑡̃ሻ൯. 
 

Further differentiating with respect to 𝑣௧̅௞ത  gives 
 𝜕ଶ𝑓𝜕𝑣௧௞𝜕𝑣௧̅௞ത = ൞ ෍ 𝛽ଶ 𝑒𝑥𝑝்

௧ሚୀ୫ୟ୶ሼ௧ሚ,௧ሽ ൫ 𝑎௧ሚ௞ +  𝛽𝑣௞ሺ𝑡̃ሻ൯,  𝑘 = 𝑘,ഥ0, otherwise.

 

 
Note that the second partial derivative is strictly positive if 𝑘 = 𝑘ത, otherwise it is zero. 
When 𝑘 = 𝑘ത, the summation goes from the larger of 𝑡 and 𝑡 ഥup to T. Consequently, the 
Hessian matrix can be constructed as a block diagonal matrix, where each block has spe-
cial structure. For a given k, define the block 
 

𝑃௞ =
⎣⎢⎢
⎢⎢⎢
⎡ డమ௙డ௩భೖడ௩భೖ డమ௙డ௩భೖడ௩మೖ ⋯ డమ௙డ௩భೖడ௩೅ೖడమ௙డ௩మೖడ௩భೖ డమ௙డ௩మೖడ௩మೖ ⋯ డమ௙డ௩మೖడ௩೅ೖ⋮ ⋮ ⋱ ⋮డమ௙డ௩೅ೖడ௩భೖ డమ௙డ௩೅ೖడ௩మೖ ⋯ డమ௙డ௩೅ೖడ௩೅ೖ⎦⎥⎥

⎥⎥⎥
⎤

 . 

 
In the tth row, the first t elements are identical. Then, denoting by 0 the T-by-T matrix of 
zeros, the Hessian is 

𝐻ሺ𝑥ሻ = ൦𝑃ଵ 𝟎 ⋯ 𝟎𝟎 𝑃ଶ ⋯ 𝟎⋮ ⋮ ⋱ ⋮𝟎 𝟎 ⋯ 𝑃௄൪  . 

 
Objective function f is convex if H is positive definite. One way to demonstrate that H is 
positive definite is to show that its pivots are all positive. To do this, use Gaussian elimi-
nation to put H in echelon form by performing the following row operations on each 
block: for each row t except the last row, replace row t with row t less row t+1. In the new 
row, if t ̅>t, all terms cancel, and the result is zero. Otherwise, the result is strictly positive. 
It follows that each block is a lower triangular matrix of strictly positive values, and thus 
the pivots, which constitute the diagonal, are also positive. Thus, the block is positive def-
inite. Performing identical operations on all blocks demonstrates that H is positive defi-
nite, and thus f is convex. 
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