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Abstract

We consider the problem of an operator controlling a fleet of electric vehicles for use in a ridehailing
service. The operator, seeking to maximize profit, must assign vehicles to requests as they arise as
well as recharge and reposition vehicles in anticipation of future requests. To solve this problem,
we employ deep reinforcement learning, developing policies whose decision making uses Q-value
approximations learned by deep neural networks. We compare these policies against a reoptimization-
based policy and against dual bounds on the value of an optimal policy, including the value of an
optimal policy with perfect information which we establish using a Benders-based decomposition.
We assess performance on instances derived from real data for the island of Manhattan in New York
City. We find that, across instances of varying size, our best policy trained with deep reinforcement
learning outperforms the reoptimization approach. We also provide evidence that this policy may
be effectively scaled and deployed on larger instances without retraining.

1 Introduction

Governmental regulations as well as a growing population of environmentally conscious consumers have
led to increased pressure for firms to act sustainably. This pressure is particularly high in the logistics
domain, which accounts for about one third of emissions in the United States (Office of Transportation
and Air Quality 2019). Ridehailing services offer a means to more sustainable transportation, promising
to reduce the need for vehicle ownership, offering higher vehicle utilization (Lyft 2018), allowing transit
authorities to streamline services (Bahrami et al. 2017), and stimulating the adoption of new vehicle
technologies (Jones and Leibowicz 2019). In recent years, ridehailing services have seen rapid and
widespread adoption, with the number of daily ridehailing trips more than quadrupling in New York
City from November 2015 to November 2019 (New York City Taxi & Limousine Commission 2018).

Simultaneously, electric vehicles (EVs) are beginning to replace internal-combustion engine (ICE)
vehicles, commanding increasingly more market share (Edison Electric Institute 2019). Coupling the
pressures to act sustainably with EVs’ promise of lower operating costs, ridehail companies are likely
to be among the largest and earliest adopters of EV technology. Indeed most major ridehail companies
have made public commitments to significant EV adoption (Slowik et al. 2019). However, EVs pose
technological challenges to which their ICE counterparts are immune, such as long recharging times and
limited recharging infrastructure (Pelletier et al. 2016).

In this work, we consider these challenges as posed to an operator of a ridehail company whose fleet
consists of EVs. We further assume that the EVs in the fleet are centrally controlled and coordinated.
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While fleet control is somewhat centralized today, it is likely to become increasingly centralized as ridehail
companies adopt autonomous vehicles (AVs). As with EVs, ridehail companies are likely to be among
the earliest and largest adopters of AVs, as they stand to offer many benefits including reduced operating
costs and greater efficiency and predictability (Fagnant and Kockelman 2015). For brevity, we refer to
this problem as the Electric Ridehail Problem with Centralized control, or E-RPC.

Our contributions in this work are as follows: 1) We offer the first application of deep reinforcement
learning (RL) to the E-RPC, developing policies that respond in real time to serve customer requests and
anticipate uncertain future demand under the additional constraints of fleet electrification. The policies
are model-free, meaning they learn to anticipate this demand without any prior knowledge of its shape.
We compare these deep RL-based policies to a reoptimization-based policy from the ridehailing literature.
2) We evaluate these policies on instances constructed with real data reflecting ridehailing operations
from New York City in 2018. 3) We establish a dual bound for the dynamic policies using a perfect
information relaxation that we solve using a Benders-like decomposition. We compare this complex dual
bound against a simpler dual bound and provide an analysis of when the additional complexity of the
perfect information bound is valuable. 4) We show that our best deep RL-based solution significantly
outperforms the benchmark reoptimization policy. 5) We further demonstrate that the best-performing
deep RL-based policy can be scaled to larger problem instances without additional training. This is
encouraging for operators of ridehail companies, as it suggests robustness to changes in the scale of
operations: in the event of atypical demand or a change in the number of vehicles (e.g., due to fleet
maintenance), the policy should still provide reliable service.

We begin by reviewing related literature in §2, then provide a formal problem and model definition
in §3. We describe our solution methods in §4, the bounds established to gauge the effectiveness of these
methods in §5, and demonstrate their application in computational experiments in §6. We offer brief
concluding remarks in §7.

2 Related Literature

Ridehail problems (RPs), those addressing the operation of a ridehailing company, fall under the broader
category of dynamic vehicle routing problems (VRPs). Within dynamic VRPs, they may be classified
as a special case of the dynamic VRP with pickups and deliveries or, more precisely, a special case of
the dynamic dial-a-ride problem. Recent technological advances in mobile communications have driven
new opportunities in ridehailing and other mobility-on-demand (MoD) services, reinvigorating research
in this area. As a result, there now exists a substantial body of literature specifically pertaining to MoD
applications within the dial-a-ride domain. This literature is the focus of our review. For a broader
survey of the dynamic dial-a-ride literature, we refer the reader to Ho et al. (2018), and, similarly, for
the dynamic VRP literature, to Psaraftis et al. (2016).

Often studies of RPs focus their investigation on the assignment problem, wherein the operator must
choose how to assign fleet vehicles to new requests. For example, Lee et al. (2004) propose the use of
real-time traffic data to assign the vehicle which can reach the request fastest. A study by Bischoff and
Maciejewski (2016) uses a variant of this assignment heuristic that accounts for whether demand exceeds
supply (or vice versa), as well as vehicles’ locations within the service region. Seow et al. (2009) propose
a decentralized heuristic that gathers multiple requests and allows vehicles to negotiate with one another
to determine which vehicles serve the new requests. They show that it outperforms heuristics like those
in Lee et al. (2004) and Bischoff and Maciejewski (2016). Hyland and Mahmassani (2018) introduce a
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suite of optimization-based assignment strategies and show that they outperform heuristics that do not
employ optimization. Following suit, Bertsimas et al. (2019) describe ways to reduce the complexity of
optimization-based approaches for problems with large fleets and many customers. They demonstrate
their proposed methods on realistically-sized problem instances that reflect ridehailing operations in New
York City.

The aforementioned studies largely ignore the task of repositioning idle vehicles in anticipation of
future demand. This is in contrast to studies such as Miao et al. (2016), Zhang and Pavone (2016), and
Braverman et al. (2019) who address their RP from the opposing perspective of the fleet repositioning
problem. Miao et al. (2016) do so using learned demand data with a receding horizon control approach.
Braverman et al. (2019) use fluid-based optimization methods for the repositioning of idle vehicles to
maximize the expected value of requests served. They establish the optimal static policy and prove that
it serves as a dual bound for all (static or dynamic) policies under certain conditions. Other studies
consider strategies for both the assignment and repositioning tasks. Fagnant and Kockelman (2014)
propose rule-based heuristic strategies while most others (such as Alonso-Mora et al. 2017, Dandl et al.
2019, and Hörl et al. 2019) employ various optimization-based methods. Because it is scalable and well-
suited for adaptation to our problem model, we implement the approach from Alonso-Mora et al. (2017)
here as a benchmark against which to compare our proposed solution methods.

A recent competing method to address ridehail problems is reinforcement learning (RL), predomi-
nantly deep reinforcement learning. As it is better-positioned to address problems with larger fleet sizes,
many studies employing RL take a multi-agent RL (MARL) approach (Oda and Tachibana 2018, Oda
and Joe-Wong 2018, Holler et al. 2019, Li et al. 2019, Singh et al. 2019). In work sharing many similarities
to ours, Holler et al. (2019) use deep MARL with an attention mechanism to address both the assignment
and repositioning tasks. They compare performance under two different MARL approaches: one in which
a system-level agent coordinates vehicle actions to maximize total reward; and one in which vehicle-level
agents act individually, each maximizing its own reward. Oda and Joe-Wong (2018) use a deep MARL
approach to tackle fleet repositioning, but rely on a myopic heuristic to perform assignment. Oda and
Tachibana (2018) do so as well, but employ special network architectures with soft-Q learning which they
argue better accommodates the inherent complexities in road networks and traffic conditions. Li et al.
(2019) employ a multi-agent RL framework, comparing two approaches that vary in what individual
vehicles know regarding the remainder of the fleet; however, in contrast to most MARL applications
to RPs, they address only the assignment problem, assuming that the vehicles are de-centralized and
therefore not repositioned by the operator. Similarly assuming de-centralized vehicles and addressing
only the assignment problem, Xu et al. (2018) combine deep RL with the optimization-based methods
used in, e.g., Alonso-Mora et al. (2017), Zhang et al. (2017), and Hyland and Mahmassani (2018). In
their work, Xu et al. use deep RL to learn the objective coefficients in a math program that is used in
an optimization framework to assign vehicles to requests.

Missing from all aforementioned studies is fleet electrification — none take into account the technical
challenges associated with electric vehicles, such as long recharging times or limited recharging infras-
tructure. The number of studies that consider these constraints is limited but growing. Most (e.g., Jung
et al. 2012; Chen et al. 2016; Kang et al. 2017; Iacobucci et al. 2019; La Rocca and Cordeau 2019)
use the heuristic and optimization methods previously mentioned. We focus here on three works closely
related to ours that employ learning-based approaches. First, Al-Kanj et al. (2018) use approximate
dynamic programming to learn a hierarchical interpretation of a value function that is used to determine
whether or not to recharge vehicles at their current location, in addition to repositioning decisions to
neighboring grid cells and the assignment of vehicles to nearby requests. The study examines the possi-
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bility for riders or the operator to reject a trip assignment at various costs; it also studies the problem of
fleet sizing. Second, Pettit et al. (2019) use deep RL to learn a policy determining when an EV should
recharge its battery and when it should serve a new request. The study includes time-dependent energy
costs. However, it only considers a single vehicle, and it ignores the task of repositioning the vehicle in
anticipation of future requests. Finally, Shi et al. (2019) apply deep reinforcement learning to the RP
with a community-owned fleet, in which they seek to minimize customer waiting times and electricity
and operating costs. Similar to many of the RL studies cited previously, the study employs a multi-agent
RL framework that produces actions for each vehicle individually which are then used in a centralized
decision-making mechanism to produce a joint action for the fleet. The joint actions assign vehicles to
requests and specify when vehicles should recharge; however the study also ignores repositioning actions.

Thus, ours marks the first application of deep reinforcement learning to the E-RPC in consideration of
EV constraints alongside both fleet repositioning and assignment tasks. We also argue that we consider a
more realistic problem environment than in most RL-based approaches to ridehail problems. Indeed, the
vast majority of studies (e.g., Al-Kanj et al. 2018; Oda and Tachibana 2018; Holler et al. 2019; Shi et al.
2019; Singh et al. 2019) rely on a coarse grid-like discretization to describe the underlying service region.
This serves as the basis for their repositioning actions, which are often restricted to only the adjacent
grid cells. This is in contrast to the current work, in which we allow repositioning to non-adjacent sites
that correspond to real charging station locations. Time discretization can also be overly coarse. Many
studies choose one minute between decision epochs, as in, for example, Oda and Joe-Wong (2018); but
some choose far longer between decision epochs, such as six minutes in Shi et al. (2019) and 15 minutes
in Al-Kanj et al. (2018). Given that current ridehailing applications provide fast, sub-minute responses,
such an arrangement would likely lead to customer dissatisfaction. We are free of such a discretization
here, allowing agents to respond to customer requests immediately.

3 Problem Definition and Model

We consider a central operator controlling a homogeneous fleet of electric vehicles V = {1, 2, . . . , V } that
serve trip requests arising randomly across a given geographical region and over an operating horizon
T . Across the region are uncapacitated charging stations (CSs, or simply stations) C = {1, 2, . . . , C} at
which vehicles may recharge or idle when not in service. The operator assigns vehicles to requests as
they arise. Additionally, the operator manages recharging and repositioning operations in anticipation
of future requests. The objective is to maximize expected profit across the operating horizon.

Several assumptions and conditions connect the problem to real-world operations. When a new
request arises, the operator responds immediately, either rejecting the request or assigning it to a vehicle.
A vehicle is eligible to serve a new request if it can pickup within w∗ time units, the amount of time
customers are willing to wait. Each vehicle maintains at most one pending trip request. Thus, a vehicle
either serves a newly assigned request immediately or does so after completing the service of a request to
which it is already assigned (“work-in-process”). Assignments of requests to vehicles cannot be canceled,
rescheduled, or reassigned. Each vehicle has a maximum battery capacity Q and known charging rate,
energy consumption rate, and speed. The operator ensures assignments and repositioning movements
are energy feasible.

We formulate the problem as a Markov decision process (MDP) whose components are defined as
follows.
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States.

A decision epoch k ∈ {0, 1, . . . ,K} begins with a new trip request or when a vehicle finishes its work-in-
process, whichever occurs first. The system state is captured by the tuple

s = (st, sr, sV). (1)

The current time st = (t, d) is the time of day in seconds t and the day of week d. If the epoch
was triggered by a new request, then sr = ((ox, oy), (dx, dy)) consists of the Cartesian coordinates for
the request’s origin and destination, otherwise sr = ∅. The vector sV = (sv)v∈V describes the state
of each vehicle in the fleet. For a vehicle v, sv = (x, y, q, j(1)

m , j
(1)
o , j

(1)
d , j

(2)
m , j

(2)
o , j

(2)
d , j

(3)
m , j

(3)
o , j

(3)
d ),

consisting of the Cartesian coordinates of the vehicle’s current position x, y; its charge q ∈ [0, Q]; and
a description of its current activity (or job) j(1), as well as potential subsequent jobs j(2) and j(3),
which may or may not exist, as determined by the operator. The description of a job j(i) consists of
its type j(i)

m ∈ {idle, charge, reposition, preprocess, serve, ∅} (equivalently, {0, 1, 2, 3, 4, ∅}; “preprocess”
refers to when a vehicle is en route to pickup a customer), as well as the coordinates of the job’s origin
j

(i)
o = (j(i)

o,x, j
(i)
o,y) and destination j

(i)
d = (j(i)

d,x, j
(i)
d,y). We limit the number of tracked jobs in the state to

three, because this is the maximum number of scheduled jobs a vehicle can have given the constraint
that a vehicle may have at most one pending trip request: if a vehicle is currently serving a request and
has a pending request, then it will have jobs of type j(1)

m = 4, j(2)
m = 3, and j(3)

m = 4. Note that we do not
allow vehicles currently preprocessing for one request to be assigned a second (this would indeed require
tracking a fourth job). With a sufficiently strict customer service requirement (i.e., the time between
receipt of a customer’s request and a vehicle’s arrival to the customer), the number of opportunities to
meet that requirement after undergoing the necessary (preprocessing, serving, preprocessing) sequence
is small enough as to warrant the situation’s exclusion. If a vehicle has n < 3 scheduled jobs, then we
set j(i)

m = j
(i)
o = j

(i)
d = ∅ for n < i ≤ 3. We note that a null job j

(i)
m = ∅ is distinct from an idle job

j
(i)
m = 0. A null job is the absence of an assignment, whereas an idle job reflects an assignment to reside

at a particular location.
An episode begins with the system initialized in state s0 in epoch 0 at time 0 on some day d with no

new request (sr = ∅) and all vehicles idling with some charge at a station (v ∈ C, q ∈ [0, Q], j(1)
m = idle,

j
(2)
m = j

(3)
m = ∅ for all v ∈ V). The episode terminates at some epoch K in state sK when the time

horizon T has been reached.

Actions.

When the process occupies state s, the set of actions A(s) defines feasible assignments of vehicles to a new
request as well as potential repositioning and recharging movements. An action a = (ar, a1, . . . , av, . . . , aV )
is a vector comprised of components ar ∈ V ∪{∅} denoting which vehicle serves new request sr as well as
a repositioning/recharging assignment av for each vehicle v indicating the station to which it should be
repositioned and begin recharging av ∈ C ∪ {∅}. ar = ∅ denotes rejection of the new request (if it exists)
and av = ∅ denotes the “no operation” (NOOP) action for vehicle v, meaning it proceeds to carry out
its currently assigned jobs. We refer to the vehicle-specific repositioning/recharging/NOOP actions av
as RNR actions. Jobs of type idle (0), charge (1), reposition (2), and ∅ are preemptable, meaning they
can be interrupted by a new assignment from the operator, whereas jobs of type preprocess (3) and serve
(4) are non-preemptable.

The following conditions characterize A(s). If there is no new request (sr = ∅), then ar = ∅. If
there is a new request, then a vehicle is eligible for assignment if it can be dispatched immediately
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Table 1: Eligible actions for an EV v.
Action Eligibility conditions
Serve request Request exists, no pending service (j(2)

m < 3), energy feasible, time feasible
Reposition to av No active or pending service (j(1)

m < 3), energy feasible
NOOP Always, unless just finished serving and no pending service (j(1)

m = ∅)

(j(1)
m ∈ {0, 1, 2, ∅}) or if it is currently servicing a customer (j(1)

m = 4) and can then be dispatched
(j(2)
m /∈ {3, 4}). Further, a vehicle-request assignment must be energy feasible and must arrive to the

customer within w∗ time units, the maximum amount of time a customer is willing to wait. Let fq(sv, sr)
be the charge with which vehicle v will reach a station after serving request sr. fq(sv, sr) is equal to the
current charge of vehicle v, minus the charge required for the vehicle to travel to the origin of the new
request (minus the charge needed to first drop off its current customer, if j(1)

m = 4), to the destination
of the new request, and then to the nearest c ∈ C from the destination. Let ft(sv, sr) be the duration
of time required for vehicle v to arrive at the customer. ft(sv, sr) is equal to the time for vehicle v
to travel to the origin of the new request from its current location (plus the time to first drop off its
current customer, if j(1)

m = 4). An assignment of vehicle v to request sr is feasible if fq(sv, sr) ≥ 0 and
ft(sv, sr) ≤ w∗. Repositioning and recharging movements must also be energy feasible and may not
preempt existing service assignments. If a vehicle is currently serving or preparing to serve a request
(j(1)
m ∈ {3, 4}), or if the vehicle has been selected to serve the new request (ar = v), then we only allow

the NOOP action av = ∅. Otherwise, we allow repositioning to any station c ∈ C that can be reached
given the vehicle’s current charge level. Lastly, if a vehicle completes a trip request, triggering a new
epoch, and that vehicle has not been assigned a subsequent trip request (j(1)

m = ∅), then it must receive
a repositioning action (av 6= ∅). This condition forces vehicles to idle only at stations. While this may
seem restrictive, we note (i) that the instances in our computational experiments (§6) contain a high
density of stations, (ii) that cities would likely prefer that idling ridehail vehicles do so only at dedicated
locations, and (iii) that non-CS idling locations can easily be included in our model as CSs at which
energy is replenished at a sufficiently small rate. We summarize the eligible actions for an EV in Table 1.

Reward Function.

When the process occupies state s and action a is selected, we earn the reward C(s,a). This reward is
equal to the revenue generated by serving a new request (if ar 6= ∅), minus any traveling costs incurred
during the subsequent epoch. Specifically, the revenue earned by serving new request sr consists of a base
fare CB and a fare proportional to the distance of the request CD · d(sr), where CD is the per-distance
revenue and d(sr) is the distance from the request’s origin to its destination. The traveling costs incurred
are CT · δ̂(s,a), where CT is a per-distance travel cost incurred by the operator and δ̂(s,a) is the total
distance traveled by the fleet in the subsequent epoch, including all repositioning and service-related
travel. We note that this value is stochastic, since the time of the next epoch is unknown and equal
to either the time of the arrival of the next request, or the next time at which a vehicle completes
work-in-process, whichever comes first.

This yields the following reward function:

C(s,a) =

−CT · δ̂(s,a) ar = ∅

CB + CDd(sr)− CT · δ̂(s,a) otherwise,
(2)
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Transition Function.

The transition from one state to the next is a function of the selected action and the event triggering the
next epoch. The subsequent state s′ is constructed by updating the current state s to reflect changes to
vehicles’ job descriptions based on selected action a. Then, at time s′t, we observe either a new request
s′r or a vehicle completing its work-in-process. At that time, we update the vehicle states s′V to reflect
new positions and charges. We also update vehicles’ job descriptions: if a vehicle has completed n jobs
between time st and s′t, we left-shift vehicles’ job descriptions by n (j(i) ← j(i+n) for 1 ≤ i ≤ 3− n) and
backfill the vacated entries with null jobs (j(i)

m = j
(i)
o = j

(i)
d = ∅ for 3− n < i ≤ 3). See Appendix A for

a more detailed description.

Objective Function.

Define a policy π to be a sequence of decision rules (Xπ
0 , X

π
1 , . . . , X

π
K), where Xπ

k is a function mapping
state s in epoch k to an action a in A(s). We seek to provide the fleet operator with a policy π? that
maximizes the expected total rewards earned during the time horizon, conditional on the initial state:

τ(π?) = max
π∈Π

E

[
K∑
k=0

C(sk, Xπ
k (sk))

∣∣∣∣∣s0

]
, (3)

where Π is the set of all policies. As is common in reinforcement learning, we will often refer to the user
or implementer of a policy as an agent.

4 Solution Methods

We consider four policies for solving the E-RPC (to which we will often refer synonymously as “agents”).
These include two policies developed using deep reinforcement learning, which we describe in §4.1, and
two benchmark policies, which we describe in §4.2.

4.1 Deep Reinforcement Learning Policies

Our two primary policies of interest leverage deep reinforcement learning (RL). The first of these uses
deep RL to determine which vehicle to assign to new trip requests and relies on optimization-based logic
for RNR decisions. We refer to this agent as deep ART (for “Assigns Requests To vehicles”) or just Dart.
Our second agent we dub deep RAFTR (“Request Assignments and FleeT Repositioning”) or Drafter.
Drafter uses deep RL both to assign vehicles to requests and to reposition vehicles in the fleet.

Before describing these policies in §4.1.3 and §4.1.4, we provide an overview of the basic method of
deep reinforcement learning in §4.1.1 and a discussion of extensions to this basic method in §4.1.2.

4.1.1 Overview.

As defined in Sutton and Barto (2018), reinforcement learning refers to the process through which an
agent, sequentially interacting with some environment, learns what to do so as to maximize a numerical
reward signal from the environment; that is, learns a policy satisfying equation (3). In practice, the
agent often achieves this by learning the value of choosing an action a from some state s, known as the
state-action pair’s Q-value (Q(s, a)), equal to the immediate reward plus the expected sum of future
rewards earned by taking action a from state s. We can express this relationship recursively following
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from the Bellman equation:

Q(s, a) = C(s, a) + γE
[

max
a′∈A(s′)

Q(s′, a′)
∣∣∣∣s, a] , (4)

where s′ is the subsequent state reached by taking action a from state s and γ ∈ [0, 1) is a discount
factor applied to the value of future rewards. With knowledge of Q-values for all state-action pairs it
may encounter, the agent’s policy is then to choose the action with the largest Q-value. However, as
the number of unique state-action pairs is too large to learn and store a value for each, a functional
approximation of these Q-values is learned. When deep artificial neural networks are used for this
approximation, the method is called deep reinforcement learning or, more specifically, deep Q-learning
(we use the terms interchangeably here). The neural network used in this process is referred to as the
deep Q-network (DQN).

Beginning with arbitrary Q-value approximations, the agent’s DQN improves through its interactions
with the environment, remembering observed rewards and state transitions, and drawing on these mem-
ories to update the set of weights that define the DQN, conventionally denoted by θ. Specifically, with
each step (completion of an epoch) in the environment, the agent stores a memory which is a tuple of
the form (s, a, r, s′), consisting of a state s, the action a taken from s, the reward earned r = C(s, a), and
the subsequent state reached s′. Once a sufficient number of memories (defined by the hyperparameter
Mstart) have been accumulated, the agent begins undergoing experience replay every Mfreq steps (Lin
1992). In experience replay, the agent draws a random sample (of size Mbatch) from its accumulated
memories and uses them to update its DQN via stochastic gradient descent (SGD) on its weights θ using
a loss function based on the difference

r + γ max
a′∈A(s′)

Q(s′, a′)−Q(s, a) (5)

(or simply r−Q(s, a) if s′ is terminal), where the Q-values in equation (5) are estimated using the agent’s
DQN. The specific loss function and SGD optimizer used to update the weights may vary — we provide
the specific implementations chosen for this work in §B.

We utilize the learned Q-values via an ε-greedy policy, wherein the agent chooses actions randomly
with some probability ε and chooses the action with the highest predicted Q-value with probability 1− ε.
The value of ε is decayed from some initially large value εi at the beginning of training to some small
final value εf over the course of some number εN of training steps. This encourages exploration when
Q-values are unknown and exploitation as its predictions improve.

4.1.2 Implemented extensions to deep RL.

We adopt several well established extensions that improve the standard deep RL process just described.
First, we utilize a more sophisticated sampling method during experience replay known as prioritized
experience replay (PER) (Schaul et al. 2016). In PER, memories are more likely to be sampled if they are
deemed more important, i.e., if the loss associated with a memory is not yet known (because the memory
has not yet been sampled during replay) or if the loss is large (if the agent was more “surprised” by the
memory). Second, we use the double DQN (DDQN) architecture (Hasselt et al. 2016), which employs
a “target” DQN for action evaluation and a “primary” DQN for action selection. The target DQN is
a clone of the primary DQN that gets updated less often (every Mupdate steps), which helps break the
tendency for DQNs to overestimate Q-values. Third, we employ dueling DDQN (D3QN) architecture
(Wang et al. 2016), in which the DQN produces an estimate both of the value of the state and of the
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relative advantage of each action. By producing these values independently (which together combine to
yield Q-values), dueling architecture allows the agent to forgo the learning of action-specific values in
states in which its decision-making is largely irrelevant. Finally, we use n-step learning (Sutton 1988),
which helps to reduce error in learned Q-values. With n-step learning, the rewards r and subsequent
states s′ stored in an agent’s memories are modified: rather than using the state encountered one step
into the future from s (s′), the subsequent state stored in the memory is that encountered n-steps into
the future (s(n)). Similarly, the reward r is replaced by the (properly discounted) sum of the next n
rewards, i.e., those accumulated between s and s(n).

The process of choosing which deep RL extensions to implement and values for associated hyper-
parameters is not unlike traditional heuristic approaches in transportation optimization. While simple
heuristics may suffice in simpler problems (see, e.g., Clarke and Wright 1964), more complex problems
often demand more complex (meta)heuristics specifically tuned for a particular application (see, e.g.,
Gendreau et al. 2002). Analogously, off-the-shelf deep RL may be successful in simpler problems (e.g.,
Karpathy 2016), but success in more complex problems requires enhancements (e.g., Hessel et al. 2018)
and is dependent on hyperparameter values (Henderson et al. 2018). The suite of deep RL extensions
adopted here and our selection of hyperparameter values (described in §B) are guided by standard values,
where available, and ultimately chosen empirically over the course of the work.

4.1.3 Dart.

Our first proposed agent, Dart uses a combination of deep Q-learning and optimization-based logic to
choose an action a = (ar, (av)v∈V) from state s = (st, sr, sV).

Assigning vehicles to requests. The action ar pairing a vehicle with the new request employs a
deep Q-network. We denote by ADart = V ∪ {∅} the action space for Dart’s DQN. The DQN takes as
input the concatenation of a subset of features from the state s which we represent by xDart = xt⊕xr⊕xV
(“⊕” is the concatenation operator). These components are defined as follows:

xt System time : the concatenation of the relative time elapsed t/T and a one-hot vector indicating
the day of the week d (e.g., for zero-indexed d with d = 0 corresponding to Monday, d = 6
corresponding to Sunday, and d currently equal to Thursday (d = 3), the vector (0, 0, 0, 1, 0, 0, 0)).

xr Request information : the concatenation of a binary indicator for whether there is a new request
1sr 6=∅; a one-hot vector indicating the location of the request’s origin; a one-hot vector indicating
the request’s destination; and for each vehicle v, the distance v would have to travel to reach the
request’s origin (scaled by the maximum such distance so values are in [0, 1] (ineligible vehicles are
given value 1)).

xV Vehicle information : the concatenation of xv for all vehicles v ∈ V (xV = x1 ⊕ · · · ⊕ xV ), where
the vehicle-specific xv is itself the concatenation of the time at which its last non-preemptable job
ends (scaled by 1/T ), the charge with which it will finish its last non-preemptable job (scaled by
1/Q), and a one-hot vector indicating its current location.

One-hot vectors in xDart that indicate location rely on a discretization of the fleet’s operating region,
as is common in other dynamic ridehail problems in the literature (e.g., Al-Kanj et al. 2018; Holler et al.
2019). We denote the set of discrete locations (taxi zones (TZs)) constituting the region by L.

xDart is passed to the agent’s DQN to produce Q-value predictions. It then uses an ε-greedy policy
as described in §4.1.1 to choose an ar ∈ ADart (infeasible vehicles are ignored). A schematic of Dart’s
DQN is shown at left in Figure 1.
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Figure 1: Schematics of the Dart and Drafter agents in the case of three vehicles and three TZs (V =
3, L = 3). Elements are concatenated at intersections marked with ⊕. The Drafter schematic shows the
case where Q-values are being predicted for vehicle 1 (in yellow). Note: in practice, a single forward pass
with xDrafter can be used to generate Q-values for all vehicles. We depict the process for a single vehicle
here for the sake of clarity.

RNR Actions. For RNR actions, whenever a request has been missed (sr 6= ∅ ∧ ar = ∅), Dart
repositions a stationary vehicle to the CS nearest the origin of the missed request, choosing the vehicle
that is closest to this CS. Let c∗r be the CS nearest the origin of the request; Ṽ ⊆ V be the subset of the
vehicles that are either idling or charging at a CS (j(1)

m ∈ {0, 1}); ft(sv, sr) be the time for vehicle v to
reach the origin of the request; and c∗v be the CS nearest vehicle v. Then Dart’s setting of RNR actions
can be stated as

av =


c∗r sr 6= ∅ ∧ ar = ∅ ∧ v = arg min

v∈Ṽ ft(sv, sr)

∅ j
(1)
m 6= ∅

c∗v otherwise.

(6)

In equation (6), the first case specifies the repositioning of the nearest eligible vehicle to the CS nearest
the origin of a missed request. The second case specifies the NOOP action for all vehicles for which it
is feasible (i.e., those with a valid current job), and the third case specifies that the remaining vehicles
(which do not have a valid current job) are assigned to reposition to the nearest CS.

4.1.4 Drafter.

From a state s, the Drafter agent uses a DQN to choose a vehicle to serve new requests ar and to provide
RNR instructions av for each vehicle v ∈ V. Whereas the number of unique actions under the control of
Dart’s DQN is V + 1, for Drafter it is (V + 1)× (C+ 1)V . For non-trivial fleet sizes V , this is intractably
large. In response, we employ a multi-agent reinforcement learning (MARL) framework which avoids
this intractability by making separate, de-centralized Q-value predictions for each vehicle. This reduces
the number of actions under the control of Drafter’s DQN to C+ 2, corresponding to the vehicle-specific
actions of relocating to each station c ∈ C, serving the request, and doing nothing. We further reduce
the number of actions by using the discretization into TZs L described in §4.1.3, yielding the action
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space ADrafter = {serve, ∅} ∪ L for Drafter’s DQN. These actions correspond respectively to serving the
request, doing nothing, and relocating to each TZ λ ∈ L. For vehicle v, we define its DQN input by
xvDrafter = (xt, xr, xv, xV), where components are as defined for Dart in §4.1.3 and the redundant xv is
included just to indicate the vehicle for which we are generating Q-values. With vehicle input xvDrafter,
the DQN makes Q-value predictions Q(xvDrafter, a) for a ∈ ADrafter. These predictions are collected for
all vehicles and used to make a centralized decision. A schematic of Drafter’s DQN is shown at right in
Figure 1.

DQN and attention mechanism. Let us consider the prediction of Q-values for a vehicle v?. In the
example in Figure 1, v? = v1. We now also incorporate into the DQN an attention mechanism (Mnih
et al. 2014) to improve the agent’s ability to distinguish the most relevant vehicles in the current state.
We expand on the attention mechanism used in Holler et al. (2019) by incorporating information about
the current request, which is likely to influence vehicles’ relevancy. Details of our attention mechanism
can be found in the appendix, §B. The attention is used to provide an alternative representation (an
embedding) of each vehicle gv ∈ Rl and the request h ∈ Rm, as well as a description of the fleet CF ∈ Rn

known as the fleet context (here l = n = 128, m = 64; see §B). These components are used to form the
vector Cv? = CF ⊕ gv? ⊕ h⊕ xt which is fed to an inner DQN. This inner DQN, which has a structure
similar to Dart’s DQN, outputs Q-values Q(xv?

Drafter, a) for a ∈ ADrafter. The process is repeated for
each v ∈ V, with each vehicle using the same attention mechanism and inner DQN (i.e., all weights are
shared).

Drafter is made scalable both through its use of an MARL approach as described above, and also
by the attention mechanism. While the MARL approach ensures that the output of the DQN does
not depend on the size of the fleet, the attention mechanism ensures the same for the input. More
specifically, the attention mechanism makes it possible to predict Q-values (via the inner DQN) using a
representation of the fleet CF whose size is not determined by the number of vehicles in the fleet. This
structure allows Drafter to be applied to instances of a different size than those on which it was trained.
For example, given a Drafter agent trained to operate a fleet of size V , if a new vehicle is purchased
and added to the fleet, or if a vehicle malfunctions and must be temporarily removed, Drafter is capable
of continuing to provide service for this modified fleet of size V ′ 6= V . We assess the scalability of the
Drafter agent in our computational experiments, described in §6.

Centralized decision-making. GivenQ-value predictions for all vehicles, Drafter’s centralized decision-
making proceeds as follows. Let V̄Drafter be the set of vehicles for whom the service action has the largest
Q-value. To serve the request, we choose the vehicle in V̄Drafter with the largest such Q-value; this
vehicle then receives NOOP for its RNR action. The remaining vehicles perform the RNR action with
the largest Q-value, with NOOP prioritized in the event of a tie (ties between repositioning actions are
broken arbitrarily). Some consideration must be given to repositioning assignments av, as the DQN pro-
duces outputs in L (TZs), while actions av take values in C (stations). Given a repositioning instruction
to some TZ λ? ∈ L for vehicle v, we set av to the station in λ? that is nearest to the vehicle.

Given an action a = (ar, (av)v∈V), define avDrafter to be the action in Drafter’s action space ADrafter

assigned to vehicle v:

avDrafter =

serve ar = v

L(av) otherwise,
(7)

where L(av) represents the TZ that contains station av.
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Experience Replay. As described in §4.1.2, Drafter saves state-transition memories (s,a, r, s(n)) at
each step which are later used to train its DQN via prioritized experience replay. Let xv(n)

Drafter be the
DQN input for vehicle v from state s(n). Because Drafter makes V predictions at each step, our sample
of Mbatch memories leads to an effective sample size of V ∗Mbatch, where each memory (s,a, r, s(n)) =
(xvDrafter, a

v
Drafter, r, x

v(n)
Drafter)v∈V . Note that the reward r is shared equally among all vehicles during

training, with each vehicle receiving the full amount. This was chosen to encourage cooperation among
the fleet. Thus, for Drafter, the difference that forms the basis of its loss function (c.f. equation (5)) is

r + γ max
a′∈ADrafter

Q(xv(n)
Drafter, a

′)−Q(xvDrafter, a
v
Drafter). (8)

4.2 Benchmark Policies

We implement two policies as benchmarks against which to assess the performance of our Dart and
Drafter agents. First, in §4.2.1 we describe the Random policy that chooses actions randomly, effectively
serving as a lower bound. Then in §4.2.2 we describe the Reopt policy, a competitive benchmark from
the ridehailing literature that leverages reoptimization to assign vehicles to requests and to reposition
the vehicles in the fleet (Alonso-Mora et al. 2017).

4.2.1 Random.

The Random policy chooses a vehicle to serve new requests (ar) uniformly from the eligible vehicles in
V ∪{∅} and chooses repositioning assignments av uniformly from the eligible locations in C ∪{∅} for each
v ∈ V.

4.2.2 Reopt.

Our Reopt agent employs the reoptimization approach introduced in Alonso-Mora et al. (2017), solving
two mixed integer programs (MIPs) in every epoch to inform its decisions. This agent is inherently
different from the other three proposed in this section. Whereas decision epochs for Dart, Drafter, and
Random are triggered by the arrival and completion of requests, the Reopt agent is afforded a decision
epoch at regular intervals (governed by the parameter Treopt; e.g., every 30 seconds). This difference
requires modifications to the problem model defined in §3.

Required model modifications. The RNR actions from which the Reopt agent may choose are
identical to those for the other agents. However, the service action ar now takes a different form. Because
the Reopt agent pools requests for Treopt time in between decision epochs, there may now be more than
one request to which the agent must respond. Thus, ar is now a set of tuples (v, r), corresponding to
matchings between a vehicle v ∈ V ∪∅ with a request r ∈ sR, where sR is the set of requests that arrived
in the last Treopt time. A rejected request is denoted by the matching (∅, r). Each request r ∈ sR has
origin and destination attributes as described in §3, however, we now also include the time at which it
was received tr.

Assigning vehicles to requests. To determine how to assign vehicles to requests, Reopt solves a
MIP minimizing the total customer waiting time. Let ωv,r be the waiting time of customer r if vehicle v
is assigned to serve it. If the current time is st, the vehicle’s state is sv, the request’s arrival time is tr,
and (as in §3) the time for the vehicle to arrive to the origin of the request from its current position is
ft(sv, r); then we have ωv,r = (st − tr) + ft(sv, r). We define two sets of binary variables: mv,r, which
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take value 1 if request r is served by vehicle v; and ψr, which take value 1 if request r is served by any
vehicle (is not rejected). These variables are otherwise 0. Let M be the set of (v, r) matchings that are
either energy- or time-infeasible, as defined in §3. The MIP to determine the assignment of vehicles to
new requests is then

minimize
∑
r∈sR

∑
v∈V

ωv,rmv,r −
∑
r∈sR

Bψr (9)

subject to
∑
r∈sR

mv,r ≤ 1, ∀v ∈ V (10)∑
v∈V

mv,r = ψr, ∀r ∈ sR (11)

mv,r = 0, ∀(v, r) ∈M (12)

ψr,mv,r ∈ {0, 1} (13)

The second term in the objective, equation (9), contains the large positive constant B ensuring that the
model does not unnecessarily ignore requests. Constraints (10) ensure that each vehicle is assigned to at
most one request. Constraints (11) serve both to ensure that at most one vehicle is assigned to serve each
request and to fix the ψr variables, denoting whether requests will be served. Constraints (12) disallow
infeasible matchings, and constraints (13) provide variable definitions.

Following the solution to this MIP, we build the set of vehicle-request matchings ar as follows. Any
request r for which ψr = 0 is unserved and receives the matching (∅, r). For the remaining requests (with
ψr = 1), we have matchings (v, r) corresponding to the non-zero mv,r variables.

RNR actions. Per the approach in Alonso-Mora et al. (2017), after assigning vehicles to requests,
Reopt then solves another MIP to reposition the vehicles in the fleet. This MIP minimizes the time
to reposition idling vehicles so as to be close to the origin of any missed requests. Alonso-Mora et al.
motivate this approach with the assumptions that missed requests may request again, that more requests
are likely to occur in the same area where not all requests can be satisfied, and that idling vehicles are
in areas with insufficient demand. We note that our Dart agent uses a modified version of this approach
for its RNR actions as well.

Let Ṽ ⊆ V be the subset of the fleet that is either idling or charging at a station (j(1)
m ∈ {0, 1}) and was

not just assigned to serve a new request in the assignment MIP (equations (9)-(13)), and let s̃R ⊆ sR be
the subset of the new requests which were rejected (received a matching (∅, r)). For each request r ∈ s̃R,
define c∗r to be the station nearest its origin. Define analogous coefficients ω̃v,r to be the travel time for
vehicle v ∈ Ṽ to reach c∗r , and let M̃ be the analogous set of energy-infeasible repositioning assignments.
We define binary variables m̃v,r which take value 1 if vehicle v is repositioned to station c∗r and are 0
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otherwise. Then the MIP to determine fleet repositioning is as follows:

minimize
∑
r∈s̃R

∑
v∈Ṽ

ω̃v,rm̃v,r (14)

subject to
∑
r∈s̃R

∑
v∈Ṽ

m̃v,r = min
(∣∣∣Ṽ∣∣∣ , |s̃R|) (15)

∑
r∈s̃R

m̃v,r ≤ 1, ∀v ∈ Ṽ (16)

∑
v∈Ṽ

m̃v,r ≤ 1, ∀r ∈ s̃R (17)

m̃v,r = 0, ∀(v, r) ∈ M̃ (18)

m̃v,r ∈ {0, 1} (19)

Constraint (15) ensures that we provide the maximum number of repositioning assignments: either we
provide an assignment for all eligible vehicles, or we provide an assignment for all missed requests.
Constraint set (16) ensures that each eligible vehicle is given at most one repositioning assignment, and
constraint set (17) ensures that each missed request is assigned to be the repositioning destination for at
most one vehicle. Constraints (18) disallow infeasible matchings, and constraints (19) provide variable
definitions.

Given a solution to this MIP, Reopt makes vehicle assignments av = c∗r for any non-zero variable
assignments m̃v,r. Any vehicle without such an assignment simply receives the NOOP action av = ∅
unless not allowed, in which case the vehicle is instructed to reposition to its nearest station. Formally,

av =


c∗r m̃v,r = 1

∅ j
(1)
m 6= ∅

c∗v otherwise,

(20)

where c∗v is the closest station to vehicle v.
We offer Reopt agent as a benchmark for a good, scalable dynamic policy. In general, reoptimization

approaches offer several potential advantages, foremost among them the ability to consolidate multiple
customer requests into a single decision-making epoch. This effectively increases the amount of informa-
tion with which the fleet operator can make decisions. As such, a good policy that pools requests should
be at least as good as a policy that serves requests immediately.

5 Dual Bounds

Assessing policy quality is hampered by the lack of a strong bound on the value of an optimal policy, a
dual bound. Without an absolute performance benchmark it is difficult to know if a policy’s performance
is “good enough” for practice or if additional research is required. Here, we offer two dual bounds. First
is a bound on the value of a policy that serves all requests (§5.1), and the second is the value of an
optimal policy with perfect information, i.e., the performance achieved via a clairvoyant decision maker
(§5.2).

5.1 Serve-All Bound.

We first consider the Serve-all (SA) dual bound, which is a bound on the value of a policy that serves
all requests. To establish this bound, we assume that the policy is able to serve all requests without
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incurring any setup travel costs. That is, we can simply sum the value of all observed requests, minus
the travel costs incurred to serve them: CB + (CD −CT ) · d(sr), where, as in §3, CB is the base revenue
earned when serving a request, CD is the per-distance revenue earned when serving a request, CT is the
per-distance travel costs incurred, and d(sr) is the distance traveled serving the request sr. We know
that, given a fleet of sufficient size (and assuming CD ≥ CT and CB ≥ 0), an optimal policy would choose
to serve all requests, because policies seek to maximize the sum of rewards, which here are non-negative
and incurred only by serving requests. The gap between the SA dual bound and the best policy is a
reflection of vehicles’ extraneous traveling and the adequacy of fleet size relative to demand and can
serve as justification for a ridehailing company to invest (or not) in additional vehicles.

5.2 Perfect Information Bound.

In practice, setup and some additional travel costs are unavoidable, and it is likely that not all requests
can be feasibly served. As a result, the SA bound is expected to be loose. In an attempt to establish a
tighter dual bound, we consider the value of an optimal policy under a perfect information (PI) relaxation.
Under the PI relaxation, the agent is clairvoyant, aware of all uncertainty a priori. In the E-RPC, to
have access to PI is to know in advance all details regarding requests: their origins, destinations, and
when they will arise. Denote such a set of known requests by R ∈ P, where P is the set of all request
sets.

In the absence of uncertainty, we can rewrite the objective function as

max
π∈Π

E

[
K∑
k=0

C(sk, Xπ
k (sk))

∣∣∣∣∣s0

]
= E

[
max
π∈Π

K∑
k=0

C(sk, Xπ
k (sk))

∣∣∣∣∣s0

]
. (21)

Notice that the perfect information problem (right-hand side of equation (21)) can be solved with the aid
of simulation. We may rely on the law of large numbers — drawing random realizations of uncertainty
(request sets R ∈ P), solving the inner maximization for each, and computing a sample average —
to achieve an unbiased and consistent estimate of the true objective value. This value is the perfect
information bound. It remains to solve the inner maximization.

In the absence of uncertainty that results from having access to PI, the inner maximization can be
solved deterministically: with all information known upfront, no information is revealed to an agent
during the execution of a policy. As a result, there is no advantage in making decisions dynamically
(step by step) rather than statically (making all decisions at time 0). This permits the use of an exact
solution via math programming, which we pursue using a Benders-based branch-and-cut algorithm in
which at each integer node of the branch-and-bound tree of the master problem, the solution is sent to
the subproblem for the generation of Benders cuts. Here, the master problem is responsible for assigning
vehicles to requests in a time-feasible manner, and the subproblem is responsible for ensuring the energy
feasibility of these assignments. Additionally, the master problem produces an estimate of the total costs
incurred through a particular assignment, and the subproblem refines this cost estimate. The use of
the Benders-based decomposition enables the solution of larger PI problems than would otherwise be
feasible. We discuss the master problem in more detail in §5.2.1, the subproblem and the generation of
cuts in §5.2.2, and comment on the bound’s tractability in §5.2.3.

5.2.1 Master problem.

The master problem, responsible for time-feasible assignments of customer requests to vehicles and
providing an estimate of the total profit earned, is the MIP defined by equations (22)-(28). In it, requests
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are represented as nodes in a directed graph G. Request nodes i and j are connected by a directed arc
(i, j) when a vehicle can feasibly serve request j after request i (ignoring energy requirements). The
graph G also contains a dummy node for each vehicle, representing the location from which it initially
departs. These dummy nodes are connected to request nodes for which the initial assignment of vehicles
to requests is time-feasible. The problem involves choosing arcs in G, starting from vehicles’ dummy
nodes, that form (non-overlapping) paths for the vehicles which indicate the sequence of requests that
vehicles will serve. If a request i is a member of some vehicle’s path, it contributes ci to the objective
function, the revenue that its service generates. Our objective also includes the travel costs incurred
along the paths that the vehicles travel in serving their assigned requests.

In the master problem, R is the set of all requests (known a priori given PI), V is the set of vehicles,
ci is the revenue earned by serving request i, hi is a binary variable taking value 1 if request i is assigned
to any vehicle, yvi is a binary variable taking value 1 if job i is the first request assigned to vehicle v, xij
is a binary variable taking value 1 if a vehicle is assigned serve request j immediately after request i, zi
is a continuous non-negative variable equal to the time at which a vehicle arrives to pick up request i, tri
is the time at which request i begins requesting service, w∗ is the maximum amount of time a customer
may wait between when they submit their request and when a vehicle arrives, tpi (dpi ) is the travel time
(distance) between the origin and destination of request i, and tsij (dsij) is the travel time (distance)
between the destination of request i and the origin of request j. For vehicles, tpv is equal to the earliest
time at which they can depart from their initial locations, and tsvi (dsvi) is equal to the travel (distance)
time between their initial locations and the origin of request i. We formally define the master problem
as

maximize
∑
i∈R

cihi − CT

∑
v∈V

∑
i∈R

dsviyvi +
∑
i∈R

∑
j∈R\{i}

dsijxij +
∑
i∈R

dpi hi

− θm (22)

subject to
∑
v∈V

yvi +
∑

j∈R\{i}

xji ≥ hi, ∀i ∈ R (23)

∑
j∈R\{i}

xij ≤ hi, ∀i ∈ R (24)

∑
j∈R

yvj ≤ 1, ∀v ∈ V (25)

zi ≥ tri + (tpv + tsvi − tri )yvi, ∀i ∈ R,∀v ∈ V (26)

zi − zj ≥ tri − trj − w∗ + (tpj + tsji − tri + trj + w∗)xji, ∀i, j ∈ R (i 6= j) (27)

hi, xij , yvi ∈ {0, 1}; tri ≤ zi ≤ tri + w∗; θm ≥ 0 (28)

The objective (22) maximizes profit: its first term captures the revenue earned, while the remaining
terms account for costs. In the objective, the first two terms in parentheses capture the distance the
vehicles travel in setting up for (traveling between) requests, and the third term in parentheses captures
the distance traveled by the vehicles while serving the requests. In its last term, the objective also includes
the continuous variable θm. This variable is controlled by optimality cuts generated in the subproblem,
effectively serving to correct the master problem’s underestimation of travel costs. While the master
problem’s objective accounts for the minimum incurred travel costs (those incurred by traveling request
sequences directly), there will likely be additional costs incurred as vehicles travel to and from stations.
These station visits are required both for vehicles to restore their charge and to idle between requests,
since they are not allowed to do so at request locations. Thus, intuitively, θm represents the costs incurred
during these required station detours.
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While θm is ultimately controlled by the subproblem, we can facilitate the solution of the PI problem
by improving the master problem’s estimation of these costs. To do so, we consider the minimum required
detours between pairs of requests. For requests i and j, let k be the station requiring the minimum detour
between i’s destination and j’s origin, and let tdij (ddij) be the time (distance) required to travel from
the destination of request i to station k to the origin of request j. Then we define the minimum detour
distances between requests

`ij =

ddij tri + w∗ + tpi + tdij ≤ trj
0 otherwise,

(29)

and then apply the following condition on θm:

θm ≥
∑
i∈R

∑
j∈R\{i}

CT `ijxij . (30)

In equation (29) we specify that if there is sufficient time for a vehicle to perform a detour between
requests i and j then it must do so, and in equation (30) we account for these additional travel costs by
raising the lower bound on θm.

For the remainder of the master problem, equation (23) manages the binary assignment variable hi,
requiring that it be included in some vehicle’s path to take value 1. Similarly, equation (24) manages the
variables for the outgoing arcs from request i, forcing them to take value 0 if the request has not been
assigned to a vehicle. Equation (25) ensures that each vehicle has at most one request assigned to be its
first. Equation (26) sets a lower bound for the time at which vehicles can arrive to their initial requests,
and equation (27) sets a lower bound for the time at which vehicles’ can arrive to subsequent requests.
Finally, equation (28) defines variables scopes’ and bounds the earliest and latest possible start times for
requests zi.

As mentioned, we only connect request nodes i and j via directed arc (i, j) if it is time-feasible to serve
request j after request i; that is, if tri + tpi + tsij ≤ trj + w. While energy-feasibility is ultimately ensured
by the subproblem, we can again facilitate in the master problem by eliminating additional arcs in G
using known energy consumptions to perform stronger feasibility checks. Let ρ be the maximum rate at
which vehicles acquire energy when recharging, qpi be the energy required to travel from the origin to the
destination of request i, qsij be the energy required to travel from the destination of request i to the origin
of request j, qdi be the energy required to travel from the destination of request i to the nearest charging
station, and qoi be the energy required to travel to the origin of request i from its nearest charging station.
Then for arc (i, j) to exist, we require that trj +w− (tri + tpi + tsij) ≥ 1

ρ max{0, (qpj + qdj − (Q− qoi − q
p
i ))},

which states that the maximum down time between i and j (left-hand side) be sufficient to accommodate
any recharging that must occur between these requests (right-hand side). We provide similar feasibility
checks for the arcs (v, i) connecting vehicle dummy nodes to requests. Specifically, the simpler time-
feasible check requires that vehicle v can arrive to request i in time: tpv + tsvi ≤ tri +w∗. In consideration
of energy requirements, we ensure tri + w∗ − (tpv + tsvi) ≥ 1

ρ max{0, qsvi + qpi + qdi − qpv}, which states that
the time for the vehicle to perform any required charging (right-hand side) cannot be greater than the
available time before it must arrive to request i. Finally, we force the underlying graph to be acyclic,
meaning we prohibit pairs of requests i, j such that (tri + tpi + tsij < trj + w∗) ∧ (trj + tpj + tsji < tri + w∗).

5.2.2 Subproblem.

A solution to the master problem is a sequence of request assignments rv = (r1
v, r

2
v, . . .) for each vehicle

v ∈ V. r1
v is taken to be the element in the singleton {j| yvj = 1} ∪ ∅; subsequent entries riv are similarly
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elements in singletons {j|xri−1
v j = 1} ∪ ∅ (rv terminates with the first null element). Given sequences

for each vehicle, the subproblem must ensure they are energy feasible. To do so, we use a modified
version of frvcpy (Kullman et al. 2020), which implements the labeling algorithm developed by Froger
et al. (2019) to solve the Fixed Route Vehicle Charging Problem (FRVCP) (Montoya et al. 2017). The
FRVCP entails providing charging instructions (where to charge and to what amount) for an electric
vehicle traversing a fixed sequence of customers. The algorithm takes as input a sequence like rv and, if
successful, terminates with the minimum duration path through the sequence that includes instructions
specifying at which charging stations to recharge and to what amount. When unsuccessful, the labeling
algorithm returns the first unreachable node in the sequence. In the original implementation customers
did not have time constraints as they do here, where vehicles are required to arrive to requests in the
window [tri , tri + w∗]. We further discuss the algorithm and our modifications to it to accommodate this
difference in the appendix, §C.

Unsuccessful termination of the algorithm for a sequence rv indicates that the sequence cannot be
traversed energy-feasibly. To remove it from the search space, we add the following feasibility cut to the
master problem:

yv,r1
v

+
j?−1∑
i=1

xri−1
v ,ri

v
< j?, (31)

where j? ≤ |rv| is the index of the first unreachable request node in rv to which the algorithm was
unable to feasibly extend a label. This cut (31) enforces that not all variables defining the subsequence
(r1
v, . . . , r

j?

v ) be selected.
When the algorithm terminates successfully, we add optimality cuts that correct the master problem’s

estimation of the costs incurred in serving the sequence rv. Specifically, let C(rv) represent the master
problem’s estimation of the costs incurred by traveling sequence rv,

C(rv) = CT

dsv,r1
v

+
|rv|−1∑
i=1

ds
ri

v,r
i+1
v

+
|rv|∑
i=1

dpi

 , (32)

and let C∗(rv) represent the actual total cost of traveling sequence rv, as determined by the solution
of the labeling algorithm. Then we add optimality cuts to the master problem that account for the
difference:

θm ≥ (C∗(rv)− C(rv))

yv,r1
v

+
|rv|−1∑
i=1

xri−1
v ,ri

v

 (|rv| − 1)

 . (33)

These cuts work by ensuring that if the master problem selects sequence rv, then it must account for its
true travel costs by setting θm ≥ C∗(rv) − C(rv). Otherwise, the right-hand side of equation (33) is at
most 0, which is redundant given the non-negativity constraint on θm, equation (28).

5.2.3 Tractability of the PI Bound.

The PI bound is often computationally intractable to obtain. This is because the estimation of the
expected value with perfect information entails repeated solutions to the inner maximization of equa-
tion (21), a challenging problem despite the absence of uncertainty. Even if the Benders-based method
of §5.2.1 and 5.2.2 does not return an optimal solution for a given realization of uncertainty, we may still
get a valid bound by using the best (upper) bound produced by the solver (Gurobi v8.1.1). The solver’s
bound serves as a bound on the value of an optimal policy with PI, and therefore also as a bound on an
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Figure 2: Mean number of requests by hour in Manhattan on a business day in 2018. The dashed vertical
line indicates episodes’ 03:00 start time.

optimal policy. This mixed bound, effectively combining both the solver’s relaxation and an information
relaxation, is weaker than a bound based on the information relaxation alone. However, we show in
computational experiments that it still provides value.

6 Computational Experiments

To test the solution methods proposed in §4, we perform computational experiments modeled after
business-day ridehailing operations on the island of Manhattan in New York City. We describe the
experimental setup in §6.1, present our results in §6.2, and offer a brief discussion of the results in §6.3.

6.1 Experimental Setup

We generate problem instances (equivalently, episodes over which the agents act) using data publicly
available for the island of Manhattan in New York City. New York City Taxi & Limousine Commission
(2018) provide a dataset consisting of all ridehail, Yellow Taxi, and Green Taxi trips taken in 2018.
We filter the data to only those trips that originate and terminate in Manhattan and those that occur
on business days (d ∈ {0, 1, 2, 3, 4} = {Mon, Tues, Weds, Thurs, Fri}, excluding public holidays). The
average daily profile for these data is shown in Figure 2. Based on this profile, we set the episode length
T to 24 hours, with episodes beginning and ending at 3:00 am, as this time corresponds to a natural
lull in demand from the previous day and gives agents time to perform proactive recharging before the
morning demand begins. Data for each trip includes the request’s pickup time as well as the location of its
origin and destination. Requests’ origins and destinations are given by their corresponding taxi zones, an
official division of New York City provided by the city government (NYC OpenData 2019) that roughly
divides the city into neighborhoods. We use this as the basis for our geographical discretization L as
described in §4, resulting in |L| = 61 TZs for Manhattan (see Figure 3). Coordinates ((ox, oy), (dx, dy))
for requests’ exact origins and destinations are drawn randomly from inside their corresponding TZs.

We fix the set of stations C to all CSs currently available or under construction in Manhattan at the
time of writing, as listed by National Renewable Energy Laboratory (2019), yielding a set of |C| = 302
CSs (blue marks in left map of Figure 3). We assume that all CSs dispense energy at a constant rate of
72kW, equal to that of a Tesla urban supercharger (Tesla 2017). Vehicles’ batteries have similar traits
to that of a mid-range Tesla Model 3, with a capacity of 62 kWh and an energy consumption of 0.15
kWh/km. Further, we assume vehicles travel at a speed of approximately 13 km/hr (8 mi/hr), incur
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Figure 3: (Left) The island of Manhattan divided into taxi zones with charging station locations shown in
blue. (Right) Distribution of requests’ desintations by taxi zone during episodes’ last hour (02:00-03:00).

travel costs of $0.53/km (Bösch et al. 2018), and, when serving a request, receive a fixed reward of
CB = $10.75 and distance-dependent reward of CD = $4.02/km, under the assumption of Euclidean
distances. We set the maximum time that customers are willing to wait for a vehicle to be w∗ = 5
minutes. These instance parameters are summarized in Table 2.

Vehicles’ initial locations are determined by drawing a TZ randomly according to the distribution of
drop-off locations during the final hour of the previous day’s operation (2:00-3:00am). See right map
in Figure 3. We then choose a charging station uniformly from within the TZ (TZs without CSs are
excluded). Vehicles’ initial charges are drawn uniformly from [0, Q]. To randomly generate a set of R
requests for an instance, we first sample a business day from 2018 then draw R requests that occurred
on that day.

We consider a primary set of problem instances with R = 1400 requests and V = 14 vehicles (we will
often refer to these instances by their R/V ratio, 1400/14). The number of requests was chosen such
that the mean number of requests per hour during the busiest time of day (between 6:00-7:00pm, see
Figure 2) is approximately 100. The number of vehicles in this set was then derived from a scaling of
the ratio R?/V ?, where R? = 449, 121 is the total number of trip requests (taxi and ridehail) served on
an average business day in Manhattan in 2018, and V ? = 4, 400 is an approximation of the number of
simultaneously active Yellow Taxis in Manhattan at any given time in 2018 (see data aggregations in,
e.g., Schneider 2019). Experiments on our 1400/14 instances include results for all agents as well as the
SA and PI bounds. The agents are evaluated over a set of 200 episodes, while the bounds — given the
high computational demand for the PI bound — are established using an average over 30 episodes. Prior
to evaluation, the Dart and Drafter agents are first trained on a separate set of 750 episodes. We note
that the PI bound cannot be solved to optimality for these instances, so the values reported correspond
to the mixed version of the bound as described in §5.2.3.

In addition to the 1400/14 instances, we also consider instances two, five, and ten times larger
(2800/28, 7000/70, and 14000/140) to assess Drafter’s ability to scale and generalize. That is, we
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Table 2: Instance parameters.
Parameter Value
Episode length T 24 hrs
Episode start time 3:00 am
Number of Taxi Zones |L| 61
Number of charging stations |C| 302
CS charging rate 72 kW
Vehicle battery capacty 62 kWh
Vehicle energy consumption 0.15 kWh/km
Vehicle speed 13 km/hr
Travel costs CT $0.53/km
Base fare CB $10.75
Per-distance fare CD $4.02/km
Max customer waiting time w∗ 5 minutes

evaluate the Drafter agent directly on 200 instances of each size without any additional training on
these instances — it simply uses its DQN as trained on the 1400/14 instances. We compare the Drafter
agent to the Random and Reopt agents. Dart is absent from this analysis as its scalability is inherently
handicapped, with its DQN’s output (ADart) dependent on the number of vehicles in the instance. This
is in contrast to Drafter, for which the size of its DQN output (ADrafter) is indifferent to the size of the
fleet. Details on the hyperparameters used in the training of the Dart and Drafter agents for all instance
size classes are provided in §B. We use a reoptimization period of Treopt = 30 seconds for the Reopt
agent.

6.2 Results

We begin with a comparison of our proposed dual bounds in §6.2.1. We then describe agents’ performance
on the instance sets, first discussing the results on our primary 1400/14 instances in §6.2.2, followed by
scalability tests in §6.2.3.

6.2.1 Comparison of Dual Bounds.

The first proposed dual bound, SA, is simple to compute but may be loose when not all requests can be
feasibly served. In contrast, the PI bound promises to be tighter, but it is significantly more challenging to
compute. Here, we aim to quantify the improvement in the bound afforded by the additional computation
for the PI bound.

Intuitively, with a larger fleet size V , more requests can be served. At some V , a policy with PI should
be able to serve all requests, so the PI and SA bounds should converge. Conversely, with decreasing fleet
size, even with PI, it should become impossible to serve all requests, so the bounds will diverge. We test
this intuition in an experiment comparing the value of these two bounds as a function of fleet size. The
results are summarized in Figure 4. We begin with instances of size 1400/14, for which (as shown in
§6.2.2) the gap between the PI and SA bounds is large. We then increment the fleet size by 2 (V+ = 2),
and resolve 15 episodes of the 1400/V instances. We find that the results confirm intuition – the gap
between the bounds decreases exponentially with increasing fleet size, reaching near equivalence (2%
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Figure 4: The mean percent difference of the SA bound relative to the PI bound over 15 episodes of
an instance with 1400 requests for varying fleet sizes. Note: computed as SA−PI

PI , where SA and PI

are (upper bounds on) the profit earned by a policy that serves all requests and an optimal policy with
perfect information, respectively.

gap between the bounds) at a fleet size of 38. Because the SA bound does not include the travel costs
incurred outside of serving requests, the gap between the SA and PI bounds will generally be greater
than zero. We note that the PI values here reflect the mixed PI bound discussed in §5.2.3, implying that
the gaps may actually be larger than these results suggest.

6.2.2 Primary 1400/14 Instance Set.

The Dart and Drafter training curves, showing their increasing objective performance over the 750
training episodes, are provided in Figure 5. Dashed horizontal lines in the figure indicate the mean
objective performance of Reopt and Random, and thin vertical lines indicate the points at which the
Dart and Drafter agents surpass the mean performance of the Reopt agent. We see that learning happens
quickly for both agents, with Dart surpassing Reopt after 96 training episodes and Drafter doing so after
only 41 episodes. Both agents’ objective performance is stable after 250 episodes. In Figure 6 we compare
agents’ performance on the 30 evaluation episodes for which the PI and SA dual bounds are available.
We find that the Drafter agent is the best performing with a mean daily profit of $10,898, although
there remains a large gap between this policy and the PI dual bound, and an even larger gap between
the PI and SA dual bounds (as expected from the experiments in §6.2.1). We note that the reported PI
bound is a mixed bound (see §5.2.3), as we are not able to solve any of the 30 episodes to optimality.
After Drafter, Dart is the second-best performing agent, earning a mean daily profit of $9,627. Dart’s
performance is not significantly different from Reopt, which has a mean profit of $9,067. On this set of
30 instances, Drafter outperforms Reopt by 20.2%.

6.2.3 Scalability Tests.

After training on the 1400/14 instances, we then apply Drafter directly to instances two, five and ten
times larger. With the primary instances of size 1400/14 being the basis with an Instance Scale of 1, we
refer to these larger instances as having Instance Scales of 2, 5, and 10, which respectively correspond
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Figure 5: Training curves for the Dart and Drafter agents, showing two-week performance averages (the
average objective over an episode and the previous 13 episodes). Dashed horizontal lines depict mean
objective values for the Random and Reopt agents. Vertical lines indicate where Dart and Drafter surpass
Reopt’s mean objective achievement.
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Figure 6: Agents’ objective performance over 30 evaluation episodes of size 1400/14 for which dual
bounds are available. Parenthesized values indicate the gap to the PI bound. Black marks indicate 95%
confidence intervals.
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Figure 7: Agents’ objective performance over 200 evaluation episodes of various instance scales.

to V/R ratios of 2800/28, 7000/70, and 14000/140 (all other instance parameters remain the same).
Across all scales, Drafter is the best performing agent. Its advantage over Reopt is largest in the 1400/14
instances, with an objective 18.2% better on average over the 200 evaluation episodes. This edge over
Reopt decreases with increasing instance scale, to 14.5% for the 2800/28 instances, 8.1% for the 7000/70
instances, and 1.7% in the 14000/140 instances. This relationship is shown in Figures 7 and 8.

We provide further comparison between the agents in Figure 9 which shows three metrics of interest
for a fleet operator: as measures of customer service, we consider average customer waiting time and
number of requests served; and as a measure of efficiency, we consider the proportion of productive travel
(the percentage of the total distance traveled by the fleet with a customer on board). We find that
Drafter serves the greatest percentage of customer requests across all instances sizes, serving 44% of
requests in the 1400/14 instances (compared to 34% for Reopt), 54% in the 2800/28 instances (44% for
Reopt), and 66% in the 14000/140 instances (61% for Reopt). Although serving fewer requests, Reopt
does achieve the lowest waiting time for the customers that it does serve. This is true across all instance
scales. Reopt serves customers 10 s faster than Drafter in the 1400/14 instances, 15.6 s faster in the
2800/28 instances, 23.9 s faster in the 7000/70 instances, and 27.2 s faster in the 14000/140 instances.
Lastly, we observe that Reopt also has a greater proportion of productive travel than Drafter, achieving
an average of 74% across instance scales, compared to an average of 50% for Drafter.

6.3 Discussion

While often in dynamic optimization no dual bound is available against which to compare policy perfor-
mance, we offer two here. Although the gaps from these bounds to our agents are large, the results still
serve to illustrate that even a loose bound has utility. For example, comparative analysis of the PI and
SA bounds suggests that access to perfect information is of significant value in the E-RPC: for instances
with a V/R ratio of 1400/38 and greater, the bounds are nearly equivalent, indicating that an optimal
policy with PI is consistently able to serve all requests.

Our computational experiments primarily set out to compare the Reopt and Drafter agents. In the
experiments posed here, Drafter is the apparent winner as it consistently achieves both the best objective
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Figure 9: Over 200 evaluation episodes of various instance scales, agents’ performance as measured by
(Left) the percent of requests that were served, (Center) the average customer waiting time, and (Right)
the proportion of travel that is productive. Note that because it does not scale directly, Dart appears
only for Instance Scale 1.
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values and the greatest percent of customer requests served. These are arguably the most important
criteria to an operator of a ridehail fleet. That Drafter consistently serves more requests, when taken
alongside its higher waiting times (207 s on average, compared to 187 s for Reopt), suggests that Drafter is
able to position the fleet so as to better cover the demand. Notably, Drafter requires no prior knowledge or
assumptions about the shape of this demand to learn to do so — in the language of reinforcement learning,
it is model-free. Rather than relying on, e.g., historical data or domain knowledge regarding parameters
describing the demand’s spatial and temporal distributions, Drafter garners sufficient working knowledge
of the demand during its training to determine which actions best allow it to serve future requests and
ultimately achieve greater objective values. Being model-free also implies that Drafter is flexible to
various relationships between actions and rewards, because this relationship is learned by the agent.
That is, while we trained and evaluated Drafter on the reward function defined by equation (2), we could
have equally used, e.g., a deterministic reward function or one which incorporated additional revenue or
cost metrics. Although displaying inferior performance than Drafter and lacking its scalability, Dart is
also model-free and therefore enjoys these same benefits. Drafter’s scalability should be encouraging for
operators of ridehail companies, as it suggests robustness to changes in problem instances. That is, in
the event that demand is slow on a particular day or one or more vehicles are unavailable (e.g., due to
repairs), Drafter should still provide reliable service.

We note the encroaching objective performance of Reopt with increasing Instance Scales relative to
Drafter, with Drafter’s advantage shrinking from 18.2% in the 1400/14 instances to 1.7% in the 14000/140
instances. This result is not surprising. First, Drafter is acting in an environment that is increasingly
different from the one in which it was trained. Additionally, with more requests pooled in a single
decision-making epoch, Reopt is armed with increasing information with which to make decisions. This
ability to wait-and-see is an innate advantage possessed by reoptimization-style agents. Future research
should investigate these two points in more detail. For example, for the former, while we lacked the
computational resources to do so here, it would be interesting to compare the performance of a scaled
Drafter agent (like the one used here) against a Drafter agent that was trained directly on instances of
the larger size. This would answer the question as to how much of Drafter’s relative decline was due to
the difference in its evaluation and training environments, rather than Reopt simply performing better
at scale. In the event that, under this comparison, the gap between Drafter and Reopt continues to be
smaller for larger instances, then it would suggest that Reopt-style agents may simply have an advantage
at larger instance scales, due to their ability to more completely observe demand before making decisions.
Regardless, it would be a worthy endeavor to create an MDP problem model that would accommodate
a deep-RL agent that could similarly pool requests for some amount of time before making a decision.

Lastly, we comment on the proportion of productive travel. This metric is primarily of interest to
cities, as they aim to reduce congestion on roadways. Our results suggest that fleet operation costs
alone may not be ample motivation for ridehail operators to minimize nonproductive travel: in the
presence of realistic revenues and prices, Drafter found that it was still in its financial interest to pursue
nonproductive vehicle movements (in order to serve future requests). To combat such behavior, cities
may wish to implement congestion pricing (see, e.g., the review in Gu et al. 2018). Future research may
investigate how learned agent behavior varies under different pricing schemes, as one would expect that
nonproductive travel would decrease with increased congestion pricing.
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7 Concluding Remarks

We considered the E-RPC, the problem faced by an operator of a ridehail service with a fleet composed of
centrally-controlled electric vehicles. To solve the E-RPC, we developed two policies, Dart and Drafter,
derived with deep reinforcement learning. To serve as a comparison, we consider a reoptimization policy
from the ridehailing literature, as well as a randomly-acting policy that serves as a lower bound. We
develop two dual bounds on the value of an optimal policy, including the value of an optimal policy
with perfect information. To establish this bound, we decompose a relaxed version of the E-RPC into
time- and energy-feasibility subproblems, and solve them via a Benders-like decomposition. We offer
an analysis of when this more complex dual bound offers value beyond that of a simpler proposed dual
bound.

We perform computational experiments on instances derived from real world data for ridehail op-
erations in New York City in 2018. Across instances of varying scales, we consistently find the deep
RL-based Drafter agent to be the best performing. On instance scales for which it was specifically
trained, it achieved an objective 18.2% better than the reoptimization policy. We further show that
Drafter is scalable, finding that, on instances two, five, and ten times larger than any on which it was
trained, it outperforms other policies by 14.5%, 8.1%, and 1.7%, respectively. These results ultimately
suggest there are opportunities for deep reinforcement learning in solving problems like the E-RPC. By
more efficiently utilizing finite resources, these methods have the potential to promote greater sustain-
ability in the domain of transportation and logistics.
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A Updating Vehicles’ Job Descriptions

Upon choosing action a from state s, we immediately update vehicles’ job descriptions. We describe this
process here. For the following discussion, let the current location of vehicle v be (vx, vy).

NOOP.

Vehicles receiving the NOOP instruction (av = ∅) see no change to their existing job descriptions.

Repositioning/Recharging.

Let the location to which the vehicle is instructed to reposition be av = c with location (cx, cy). We set
the first job’s type to repositioning (j(1)

m = 2), its origin to the vehicle’s current location (j(1)
o = (vx, vy)),

and its destination to c (j(1)
d = (cx, cy)). We then set the second job type to charging (j(2)

m = 0) which
begins and ends at c (j(2)

o = j
(2)
d = (cx, cy)). After recharging, the vehicle then idles at the station:

j
(3)
m = 0 and j

(3)
o = j

(3)
d = (cx, cy).

Serving Request.

Let the new request have origin (ox, oy) and destination (dx, dy).

No work-in-process. If the vehicle is not already serving a request (j(1)
m 6= 4), then its first job is

updated to type preprocess (j(1)
m = 3) with origin j

(1)
o = (vx, vy) and destination j

(1)
d = (ox, oy). Its

second job is then serving the customer, so we set the type to serve (j(2)
m = 4), the origin j(2)

o = (ox, oy),
and the destination j(2)

d = (dx, dy). The vehicle’s third job is then empty, so we set j(3)
m = j

(3)
o = j

(3)
d = ∅.

Work-in-process. If the vehicle is currently serving an existing customer (j(1)
m = 4), then the first job

is unchanged. The second job is preprocess (j(2)
m = 3), as the vehicle moves from the drop-off location

of its current customer (j(2)
o = j

(1)
d ) to the pick-up location of the new customer (j(2)

d = (ox, oy)). The
vehicle’s third job is then to serve the customer request, so we set the type to serve (j(3)

m = 4), the origin
j

(3)
o = (ox, oy), and the destination j

(2)
d = (dx, dy).

B Agent Details: Hyperparameters & Attention Mechanism

We provide here additional details about the training and implementation of the Dart and Drafter
agents. Hyperparameters, chosen based on empirical results, are given in Table 3. The rest of this
section describes the attention mechanism used in Drafter’s DQN.

The attention mechanism used by the Drafter agent is depicted in Figure 1. We begin by creating an
embedding gv of each vehicle’s representation xv using a single dense layer called the “vehicle embedder.”
An embedding of some input is simply an alternative representation of that input. For example, for
a vehicle representation xv ∈ [0, 1]2 × {0, 1}|L| (see §4.1.3) the embedder maps it to gv ∈ R128 via
f(Waxv + b), where Wa is a 128 × (2 + |L|) matrix of trainable weights, b is a 128-length vector of
trainable weights, and f is the activation function (here a rectified linear unit, ReLU ). Similar to vehicle
embeddings gv, we create an embedding h ∈ R64 of the request xr using another single dense layer (the
“request embedder”). We then concatenate each vehicle’s embedding gv with the request embedding h
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Table 3: Agents’ hyperparameters.

Parameter Dart Drafter
Optimizer (learning rate) Adam (0.001) Adam (0.001)
Loss function Huber Huber
Discount factor γ 0.999 0.999
Memory capacity 1,000,000 1,000,000
Steps prior to learning Mstart 2,000 2,000
Training frequency Mfreq 100 100
Batch size Mbatch 32 32
Initial epsilon εi 1 1
Final epsilon εf 0.01 0.1
Epsilon decay steps εN 75,000 75,000
PER type None (uniform) proportional
PER α - 0.6
PER β0 - 0.4
PER beta decay steps - 600,000
Target network update frequency Mupdate 5,000 5,000
n-step learning 3 3
DQN activation functions ReLU ReLU*
Number of hidden layers (pre-dueling, advantage stack, value stack) (1,2,2) (2,2,2)**

* With the exception of the layers in the attention mechanism as described in §B.

** For the inner DQN (see Figure 1).
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to produce joint embeddings jv = gv ⊕ h. The jvs and gvs are then used to perform attention over the
vehicles, creating a fleet context vector CF ∈ R128 via

CF =
∑
v∈V

αvgv, (34)

where αv = σ(w · tanh(W · jv)) is a scalar weighting vehicle v, σ is the sigmoid activation function, w is
a trainable vector of weights, and W is a trainable matrix of weights (the summation in equation (34)
is performed element-wise). This attention mechanism is similar to the one used to produce the fleet
context in Holler et al. (2019), with the notable difference that here we also incorporate the request.
As the request sr is likely to influence which vehicles are relevant in a given state, its inclusion in the
attention mechanism should yield a more descriptive fleet context CF . The fleet context vector is then
used in the production of Q-values for each vehicle as described in §4.1.4.

C Froger et al. (2019) FRVCP Labeling Algorithm

We provide here additional details on the labeling algorithm from Froger et al. (2019) and our modifi-
cations to accommodate time constraints on the customers. We will refer to the sequence of requests to
be served by vehicle v, as determined by the master problem (§5.2), by rv = (r1

v, r
2
v, . . .).

C.1 Algorithm Overview

To find the optimal recharging instructions given a request sequence rv, the FRVCP is reformulated
as a resource-constrained shortest path problem. The algorithm then works by setting labels at nodes
on a graph G′v (see example in Figure 10) that reflects the vehicle’s assigned request sequence rv and
possible charging station visits. Labels are defined by state-of-charge (SoC) functions. SoC functions are
piecewise-linear functions comprised of supporting points z = (zt, zq) that describe a state of departure
from a node in G′v in terms of time zt and battery level zq. See Figure 11 for an example.

During the algorithm’s execution, labels are extended along nodes in G′v. When extending labels, SoC
functions are shifted by the travel time and energy between nodes, and supporting points resulting in
infeasible (negative) charges are pruned. When extending a label to a charging station node, we create
new supporting points that correspond to the breakpoints in the charging curve at that station – energy
levels at which the charging rate changes. (Note that here, we assume linear charging until the vehicle
reaches full battery, at which point it begins idling. This breakpoint corresponds to z2 in the left graph
of Figure 11.) We continue to extend labels along nodes in G′v until either the destination node r|rv|

v is
reached or there are no feasible label extensions. If the destination node is reached, the algorithm returns
the earliest arrival time to that node based on the label’s SoC function and the sequence is deemed to be
energy feasible; if the destination node cannot be reached, the sequence is deemed energy-infeasible and
the algorithm returns the first request node to which it could not extend a label. Bounds on energy and
time are established in pre-processing and are used alongside dominance rules during the algorithm’s
execution in order to improve its efficiency. For complete details on the algorithm, we refer the reader
to Froger et al. (2019).

C.2 Algorithm Modifications

We modify the algorithm to accommodate time constraints for the requests in rv, which are not considered
in the original implementation. We assume that the vehicle is eligible to depart its initial location, denoted
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Figure 10: A depiction of the graph G′v for a vehicle assigned to serve three customer requests. In the
example, we assume there are two stations, A and B, at which the vehicle can recharge.

0v, at time tpv with charge qpv . Moving between locations a and b requires energy qsa,b and time tsa,b (if
b is a request, the values reflect the time and energy to reach its destination via its origin). For this
discussion, additional information about the algorithm beyond the overview in §C.1 may be necessary,
for which we refer the reader to the description of Algorithm 3 in §5.3 and Appendix E of Froger et al.
(2019).

The first modification serves to include the option of idling at charging stations. We add a point in
the charging function at (∞, Q) as shown in Figure 11. This allows the vehicle to idle at a CS after it
has fully charged its battery. Second, when extending a label to a request, we prune supporting points
at the request node based on the request’s time constraints. Specifically, all supporting points that are
too early are shifted later in time. This may result in multiple supporting points with the same time
but different energy levels, in which case we keep only the supporting point with maximum energy.
Supporting points whose times are too late are eliminated, and a new supporting point is established
where the SoC function intersects the end of the customer’s time window. These processes are shown
in Figure 11. Finally, when extending a label from one request node directly to another, if a supporting
point has been shifted later in time by some amount ∆t (like z′′1 in Figure 11), then the point incurs
a charge penalty ∆q. This reflects the constraint that vehicles may not idle at request nodes, so we
assume that the vehicle has continued driving (e.g., “circling the block”) during the time ∆t and has
thus drained its battery by the amount ∆q. Note that such penalties are not incurred when extending
to or from charging station nodes in G′v as these nodes have no time constraints.
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Figure 11: SoC functions for labels extended from 0v to B to r1
v. (Left) The SoC function at B

after arriving directly from 0v with supporting points corresponding to immediate departure without
recharging (z1), recharging completely (z2), and subsequent indefinite idling (z3). (Center) These points
are then shifted by (tsB,r1

v
,−qsB,r1

v
) as we extend a label to r1

v, resulting in points z′1, z′2, z′3. (Right)
Supporting points must lie within customer r1

v’s time window w∗. Point z′1 is eliminated since it is
dominated after this shift (indicated by the “x”), having less charge than the new point z′′1 . Point z′3 is
eliminated and the new point z′′2 is created where the SoC function intersects the end of the time window.
Note that there is no charge penalty incurred here, as the label is being extended from a charging station.
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