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Abstract

Although increasing amounts of transaction data make it possible to characterize uncertainties

surrounding customer service requests, few methods integrate predictive tools with prescriptive

optimization procedures to meet growing demand for small-volume urban transport services.

We incorporate temporal and spatial anticipation of service requests into approximate dynamic

programming (ADP) procedures to yield dynamic routing policies for the single-vehicle rout-

ing problem with stochastic service requests, an important problem in city-based logistics. We

contribute to the routing literature as well as to the field of ADP. We combine offline value

function approximation (VFA) with online rollout algorithms resulting in a high-quality, com-

putationally tractable policy. Our offline-online policy enhances the anticipation of the VFA

policy, yielding spatial and temporal anticipation of requests and routing developments. Our

combination of VFA with rollout algorithms demonstrates the potential benefit of using offline

and online methods in tandem as a hybrid ADP procedure, making possible higher-quality

policies with reduced computational requirements for real-time decision-making. Finally, we

identify a policy improvement guarantee applicable to VFA-based rollout algorithms, show-

ing that base policies composed of deterministic decision rules lead to rollout policies with

performance at least as strong as that of their base policy.
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1 Introduction

By the year 2050, two-thirds of the world’s population is expected to reside in urban areas (United

Nations, 2015). With many businesses’ operations already centralized in cities (Jaana et al., 2013),

urbanization coupled with growth in residential e-commerce transactions (Capgemini, 2012) will

significantly increase the demand for small-volume urban transport services. Concurrent with ris-

ing demand for city-based logistics is a significant increase in the availability of transaction data,

enabling firms to better characterize uncertainties surrounding the quantities, locations, and timings

of future orders. Although the data required to anticipate customer requests are readily available,

few methods integrate predictive tools with prescriptive optimization methods to anticipate and

dynamically respond to requests. In this paper, we combine online and offline approximate dy-

namic programming (ADP) procedures to yield dynamic vehicle routing policies that temporally

and spatially anticipate service requests. Our work addresses in part the growing complexities of

urban transportation and makes general contributions to the field of ADP.

Vehicle routing problems (VRPs) with stochastic service requests underlie many operational

challenges in logistics and supply chain management (Psaraftis et al., 2015). These challenges are

characterized by the need to design routes for vehicles to meet customer service requests arriving

randomly over a given geographical area and time horizon. For example, package express firms

(e.g., local couriers and United Parcel Service) often begin a working day with a set of known

service requests and may dynamically adjust vehicle routes to accommodate additional calls arriv-

ing throughout the day (Hvattum et al., 2006). Similarly, less-than-truckload logistics or service

technicians (e.g., roadside assistance and utilities employees) may periodically adjust preliminary

schedules to accommodate requests placed after the start of daily business (Jaillet, 1985; Thomas,

2007). In each of these examples, past customer transaction data can be used to derive probability

distributions on the timing and location of potential customers requests, thus opening the door to

the possibility of dynamically adjusting vehicle routes in anticipation of future requests.

Although a stream of routing literature focuses on VRPs with stochastic service requests, only

a small portion of this research explicitly employs spatial and temporal anticipation of requests

and routing developments to dynamically move vehicles in response to customer calls. Figure 1

illustrates the potential value of anticipatory routing when the task is to dynamically direct a vehicle
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to serve all requests made prior to the beginning of a work day and as many requests arriving during

the work day as possible. Though a dispatcher may manage multiple vehicles, the focus of this

example is the assignment of requests to a single vehicle. The upper left portion of Figure 1 shows

the vehicle’s current position 02:00 hours after the start of work, a tentative route through three

assigned customers that must conclude at the depot by 06:00 hours, two new service requests, and

three yet-to-be-made and currently unknown service requests along with the times the requests are

made. In this example, the vehicle traverses a Manhattan-style grid where each unit requires 00:15

hours of travel time. Because assigning both current requests is infeasible, at least one must be

rejected (denoted by a cross through the request), a term we use to indicate the request will not be

served by the vehicle. We do not reconsider rejected requests. A rejected request may be served

by a third party or on the following work day. The bottom half of Figure 1 depicts the potential

consequences of assigning each request, showing more customers can be serviced by assigning the

current bottom-right request than by assigning the current top-left request, and thus demonstrating

the potential benefit of combining anticipation with routing decisions.

A natural model to join anticipation of customer requests with dynamic routing is a Markov

decision process (MDP), a decision-tree model for dynamic and stochastic optimization problems.

Although VRPs with stochastic service requests can be formulated as MDPs, for many problems of

practical interest, it is computationally intractable to solve the Bellman value functions and obtain

an optimal policy (Powell, 2011). Consequently, much of the research in dynamic routing has

focused on decision-making via suboptimal heuristic policies. For VRPs with stochastic service

requests, while the literature identifies heuristic methods to make real-time route adjustments,

many of the resulting policies do not leverage anticipation of customer requests to make better

decisions.

One approach to incorporate anticipation into dynamic routing is offline value function approx-

imation (VFA), often consisting of an iterative simulation-optimization procedure to approximate

rewards-to-go via aggregate state representations. However, both temporal and spatial anticipation

is challenging to achieve in an offline setting. As evidenced by the work of Ulmer et al. (2016), for

most problems of practical interest, computational limitations restrict VFAs to low-dimensional

state representations. Further, though state-of-the-art, Ulmer et al. (2016) rely solely on temporal

aspects of the state variable to estimate rewards-to-go, ignoring the potential benefits of spatial
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Figure 1: Anticipating Times and Locations of Future Requests

anticipation.

In this paper, we propose a dynamic routing method that augments offline VFA with online

rollout algorithms and which is suitable for larger problem instances. Introduced by Bertsekas

et al. (1997), a rollout algorithm builds a portion of the current-state decision tree and then uses a

given base policy – in this paper the temporal VFA policy of Ulmer et al. (2016) – to approximate

the remainder of the tree via their base policy’s rewards-to-go. We find rollout algorithms com-

pensate for anticipation of details absent in the base policy, thus a rollout algorithm adds spatial

anticipation to the temporal base policy. Indeed, we observe the performance of our offline-online

ADP heuristic significantly improves on the performance of the temporal VFA policy in isolation

and scales well to large problem instances.

We make contributions to the literature on VRPs with stochastic service requests as well as

general methodological contributions to the field of ADP:
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Contributions to Vehicle Routing

We make two contributions to the routing literature. First, our offline-online approach yields

computationally-tractable, high-quality dynamic routing policies. Further, we achieve temporal-

spatial anticipation by pairing with a rollout algorithm the temporal VFA policy of Ulmer et al.

(2016). Because a rollout algorithm explicitly builds a portion of the decision tree and looks ahead

to potential future states, the resulting rollout policy is anticipatory by definition, even when built

on a non-anticipatory base policy. Looking to the broader routing literature and toward general dy-

namic and stochastic optimization problems, we believe rollout algorithms may serve as a means to

enhance anticipatory decision-making and connect data-driven predictive tools with optimization.

Second, we explore the merits of temporal anticipation versus those of spatial anticipation when

dynamically routing a vehicle to meet stochastic service requests. Comparing a simulation-based

spatial VFA with the temporal VFA of Ulmer et al. (2016), we identify the geographic spread

of customer locations as a predictor of the success of temporal versus spatial anticipation. As

the distribution of customer locations moves from uniform toward clustered across a service area,

anticipation based on service area coverage tends to outperform temporal anticipation and vice

versa.

Contributions to Approximate Dynamic Programming

We make three methodological contributions to the broader field of ADP. First, we combine of-

fline VFA with with online rollout algorithms. Our combination of VFAs and rollout algorithms

demonstrates the potential benefit of using offline and online methods in tandem as a hybrid ADP

procedure. Via offline simulations, VFAs potentially capture the overarching structure of an MDP

(Powell, 2011) via low-dimensional state representations. In contrast, online rollout algorithms

typically examine small portions of the state space in full detail, but due to computational consid-

erations are limited to local observations of MDP structure. As our work demonstrates, combining

VFAs with rollout algorithms merges global structure with local detail, bringing together the ad-

vantages of offline learning with the online, policy-improving machinery of rollout. In particular,

our computational experiments demonstrate a combination of offline and online effort significantly

reduces online computation time while yielding policy performance comparable to that of online

or offline methods in isolation.
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Second, we identify a policy improvement guarantee applicable to VFA-based rollout algo-

rithms. Specifically, we demonstrate any base policy composed of deterministic decision rules –

functions that always select the same decisions when applied in the same states – leads to rollout

policies with performance at least as good as that of the base policy. Such decision rules might take

the form of a VFA, a deterministic mathematical program where stochastic quantities are replaced

with their mean values, a local search on a priori policies, or a threshold-style rule based on key

parameters of the state variable. This general result explains why improvement over the underlying

VFA policy can be expected when used in conjunction with rollout algorithms and points toward

hybrid ADP methods as a promising area of research.

Our contributions to ADP extend the work of Li and Womer (2015), which combines rollout

algorithms with VFA to dynamically schedule resource-constrained projects. We go beyond Li

and Womer (2015) by identifying conditions necessary to achieve a performance improvement

guarantee, thus making our treatment of VFA-based rollout applicable to general MDPs. Further,

our computational work explicitly examines the tradeoffs between online and offline computation,

thereby adding insight to the work of Li and Womer (2015).

Finally, as a minor contribution, our work is the first to combine with rollout algorithms the

indifference zone selection (IZS) procedure of Kim and Nelson (2001, 2006). As our computa-

tional results demonstrate, using IZS to systematically limit the number of simulations required to

estimate rewards-to-go in a rollout algorithm can significantly reduce computation time without

degrading policy quality.

The remainder of the paper is structured as follows. In §2, we formally state and model the

problem. Related literature is reviewed in §3. We describe our offline-online ADP approach in §4

and benchmark heuristics in §5 followed by a presentation of computational experience in §6. We

conclude the paper in §7.

2 Problem Statement and Formulation

The VRPSSR is characterized by the need to dynamically design a route for one vehicle to meet

service calls arriving randomly over a working day of duration T and within a service region C.

The duration limit may account for both work rules limiting an operator’s day (U.S. Department
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of Transportation Federal Motor Carrier Safety Administration, 2005) as well as a cut-off time

required by pickup and delivery companies so deadlines for overnight linehaul operations can be

met. The objective of the VRPSSR is to identify a dynamic routing policy, beginning and ending

at a depot, that serves a set of early-request customers Cearly ⊆ C known prior to the start of the

working day and that maximizes the expected number of serviced late-request customers who

submit requests throughout the working day. The objective reflects the fact that operator costs are

largely fixed (ATA Economics & Statistical Analysis Department, 1999; The Tioga Group, 2003),

thus companies wish to maximize the use of operators’ time by serving as many customers as the

day they request possible.

We model the VRPSSR as an MDP. The state of the system at decision epoch k is the tuple

sk = (ck, tk, C̄k, C̃k), where ck is the vehicle’s position in service region C representing a customer

location or the depot, tk ∈ [0, T ] is the time at which the vehicle arrives to location ck and marks

the beginning of decision epoch k, C̄k ⊆ C is the set of assigned customers not yet serviced, and

C̃k ⊆ C is a (possibly empty) set of service requests made at or prior to time tk but after time tk−1,

the time associated with decision epoch k−1. In initial state s0 = (depot, 0, Cearly, ∅), the vehicle is

positioned at the depot at time zero, has yet to serve the early-request customers composing Cearly,

and the set of late-request customers is empty. To guarantee feasibility, we assume there exists a

route from the depot, through each customer in Cearly, and back to the depot with duration less than

or equal to T . At final decision epoch K, which may be a random variable, the process occupies a

terminal state sK in the set {(depot, tK , ∅, ∅) : tK ∈ [0, T ]}, where the vehicle has returned to the

depot by time T , has serviced all early-request customers, and we assume the final set of requests

C̃K is empty.

A decision permanently assigns or rejects each service request in C̃k and directs the vehicle

to a new location c in service region C. We denote a decision as the pair x = (a, c), where a is

a |C̃k|-dimensional binary vector indicating assignment (equal to one) or rejection (equal to zero)

of each request in C̃k. When the process occupies state sk at decision epoch k, the set of feasible

decisions is

X (sk) =

{
(a, c) :
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a ∈ {0, 1}|C̃k|, (1)

c ∈ C̄k ∪ C̃ ′k ∪ {ck} ∪ {depot}, (2)

c 6= depot if C̄k ∪ C̃ ′k \ {ck} 6= ∅, (3)

feasible routing
}
. (4)

Condition (1) requires each service request in C̃k to be assigned to this vehicle or rejected. Condi-

tion (2) constrains the vehicle’s next location to belong to the set C̄k ∪ C̃ ′k ∪ {ck} ∪ {depot}, where

C̃ ′k = {c ∈ C̃k : aC̃−1
k (c) = 1} is the set of customers assigned by a and C̃−1

k (c) returns the index of

element c in C̃k. Setting c = ck is the decision to wait at the current location for a base unit of time

t̄. Per condition (3), travel to the depot is disallowed when assigned customers in C̄k and C̃ ′k have yet

to be serviced. Condition (4) requires a route exists from the current location, through all assigned

customers, and back to the depot with duration less than or equal to the remaining time T − tk less

any time spent waiting at the current location. Because determining whether or not given values of

a and c satisfy condition (4) may require the optimal solution value of an open traveling salesman

problem, identifying the full set of feasible decisions may be computationally prohibitive. In the

Appendix, we describe a cheapest insertion method to quickly check if condition (4) is satisfied.

When the process occupies state sk and decision x is taken, a reward is accrued equal to the

number of assigned late-request customers: R(sk, x) = |C̃ ′k(sk, x)|, where C̃ ′k(sk, x) is the set C̃ ′k
specified by state sk and a, the assignment component of decision x.

Choosing decision x when in state sk transitions the process to post-decision state sxk =

(ck, tk, C̄xk ) where the set of assigned customers C̄xk = C̄k ∪ C̃ ′k is updated to include the newly as-

signed requests. How the process transitions to pre-decision state sk+1 = (ck+1, tk+1, C̄k+1, C̃k+1)

depends on whether or not decision x directs the vehicle to wait at its current location. If c 6= ck,

then decision epoch k + 1 begins upon arrival to position c. Denoting known travel times between

two locations in C via the function d(·, ·), the vehicle’s current location is updated to ck+1 = c, the

time of arrival to ck+1 is tk+1 = tk + d(ck, ck+1), and C̄k+1 = C̄xk \ {ck} is updated to reflect service

at the vehicle’s previous location ck. If c = ck, then decision epoch k+ 1 begins after the wait time

of t̄. The arrival time tk+1 = tk + t̄ is incremented by the waiting time and C̄k = C̄xk is unchanged.

At the next decision epoch k + 1, a new set C̃k+1 of late-request customers may be observed.

Denote a policy π by a sequence of decision rules (Xπ
0 , X

π
1 , . . . , X

π
K), where each decision rule
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a. VRPSSR Depicted as a 

Decision Tree 
b. Offline VFA Temporal 

Decision Rule 

c. Online-Offline Spatial-

Temporal Rollout 

Decision Rule 

Figure 2: MDP Model and Heuristic Decision Rules

Xπ
k (sk) : sk 7→ X (sk) is a function mapping the current state to a feasible decision. Letting Π

be the set of all Markovian deterministic policies, we a seek a policy π in Π that maximizes the

expected total reward conditional on initial state s0: E[
∑K

k=0R(sk, X
π
k (sk))|s0].

Figure 2a depicts the MDP model as a decision tree, where square nodes represent pre-decision

states, solid arcs depict decisions, round nodes are post-decision states, and dashed arcs denote

realizations of random service requests. The remainder of Figure 2 is discussed in subsequent

sections.

3 Related Literature

In this section we discuss vehicle routing literature where the time and/or location of service re-

quests is uncertain. Following a narrative of the extant literature, we classify each study according

to its solution approach and mechanism of anticipation.

For problems where both early- and late-request customers must be serviced, Bertsimas and

Van Ryzin (1991), Tassiulas (1996), Swihart and Papastavrou (1999), and Larsen et al. (2002)

explore simple rules to dynamically route the vehicle with the objective of minimizing measures

of route cost and/or customer wait time. For example, a first-come-first-serve rule moves the
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vehicle to requests in the order they are made and a nearest-neighbor rule routes the vehicle to the

closest customer. Although our methods direct vehicle movement via explicit anticipation of future

customer requests, the online decision-making of rule-based schemes is at a basic level akin to our

use of rollout algorithms, which execute on-the-fly all computation necessary to select a feasible

decision.

In contrast to the rule-based methods of early literature, Psaraftis (1980) re-optimizes a route

through known customers whenever a new request is made and uses the route to direct vehicle

movement. Building on the classical insertion method of Psaraftis (1980), Gendreau et al. (1999,

2006) use a tabu search heuristic to re-plan routing when new requests are realized. Similarly,

Chen et al. (2006) and Lin et al. (2014) apply route construction and improvement heuristics to

dynamically route new requests. Ichoua et al. (2000) augment Gendreau et al. (1999, 2006) by

allowing mid-route adjustments to vehicle movement and Mitrović-Minić and Laporte (2004) ex-

tend Gendreau et al. (1999, 2006) by dynamically halting vehicle movement via waiting strategies.

Ichoua et al. (2006) also explore waiting strategies to augment the method of Gendreau et al. (1999,

2006), but explicitly consider the likelihood of requests across time and space in their wait-or-not

decision. Similarly, Branchini et al. (2009) heuristically solve deterministic routing problems at

each decision epoch with consideration of various waiting strategies. Additionally, within a genetic

algorithm, van Hemert and La Poutré (2004) give preference to routes more capable of accommo-

dating future requests. Likewise, Ferrucci et al. (2013) consider the locations of potential future

requests in a tabu search framework. With the exception of Ichoua et al. (2006), van Hemert and

La Poutré (2004), and Ferrucci et al. (2013), these heuristic methods only work on currently avail-

able information and do not account for uncertainty in future requests. In our work, we seek to

explicitly anticipate customer requests across time and space.

Building on the idea of Psaraftis (1980), Bent and Van Hentenryck (2004) and Hvattum et al.

(2006) iteratively re-optimize a collection of routes whenever a new request is made and use the

routes to direct vehicle movement. Each route in the collection sequences known service requests

as well as a different random sample of future service requests. Using a “consensus” function, Bent

and Van Hentenryck (2004) and Hvattum et al. (2006) identify the route most similar to other routes

in the collection and use this sequence to direct vehicle movement. Ghiani et al. (2009) proceed

similarly, sampling potential requests in the short-term future, but use the collection of routes to
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estimate expected costs-to-go instead of to directly manage location decisions. Motivated by this

literature, the spatial VFA we consider in §5.1 approximates service area coverage via simulation

and routing of requests.

Branke et al. (2005) explore a priori strategies to distribute waiting time along a fixed sequence

of early-request customers with the objective of maximizing the probability of feasible insertion

of late-request customers. Thomas (2007) also examines waiting strategies, but allow the vehicle

to dynamically adjust movement with the objective of maximizing the expected number of ser-

viced late-request customers. Using center-of-gravity-style heuristics, the anticipatory policies of

Thomas (2007) outperform the waiting strategies of Mitrović-Minić and Laporte (2004). Further,

Ghiani et al. (2012) demonstrate the basic insertion methods of Thomas (2007) perform compa-

rably to the more computationally intensive scenario-based policies of Bent and Van Hentenryck

(2004), an insight we employ in the spatial approximation of §5.1 where we sequence customers

via cheapest insertion. Similar to our work, these methods explicitly anticipate customer requests.

However, unlike Thomas (2007), we do not know in advance the locations of potential service

requests, thereby increasing the difficulty of the problem and making our methods more general.

In contrast to much of the literature in our review, the methods of Meisel (2011) give explicit

consideration to the timing of service requests and to customer locations. Using approximate value

iteration (AVI), Meisel (2011) develops spatial-temporal VFAs and obtains high-quality policies

for three-customer problems. Acknowledging Meisel (2011) as a proof-of-concept, Ulmer et al.

(2016) extend the ideas of Meisel (2011) to practical-sized routing problems by developing com-

putationally tractable methods to identify temporal-only VFAs leading to high-quality dynamic

routing policies. We further describe the work of Ulmer et al. (2016) in §4.1 and discuss in §4.2

how the combination of a temporal-only VFA with a rollout algorithm leads to a spatial-temporal

policy suitable for large-scale problems.

To conclude our review, we present Table 1 as an additional perspective on the vehicle rout-

ing literature where the time and/or location of service requests is unknown. Table 1 classifies

the extant literature across several dimensions with respect to the solution method employed and

the anticipation of future customer requests. The bottom row of Table 1 represents the work in

this paper. A check mark in the “Subset Selection” column indicates the method explicitly ad-

dresses customer assignments and rejections. Papers focusing on fewer decisions typically give
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Table 1: Literature Classification
Solution Approach Anticipation

Literature Subset Selection Online Offline Future Value Stochastic Temporal Spatial

Psaraftis (1980) n/a X

Bertsimas and Van Ryzin (1991) n/a X

Tassiulas (1996) n/a X

Gendreau et al. (1999) n/a X

Swihart and Papastavrou (1999) n/a X

Ichoua et al. (2000) n/a X X

Larsen et al. (2002) n/a X

Mitrović-Minić and Laporte (2004) n/a X

Bent and Van Hentenryck (2004) n/a X X X

van Hemert and La Poutré (2004) X X X X

Branke et al. (2005) X X X X X

Ichoua et al. (2006) n/a X X X X

Chen et al. (2006) n/a X

Gendreau et al. (2006) n/a X

Hvattum et al. (2006) n/a X X X

Thomas (2007) X X X X

Branchini et al. (2009) n/a X X

Ghiani et al. (2009) n/a X X X X X

Meisel (2011) X X X X X X

Ferrucci et al. (2013) n/a X X X

Lin et al. (2014) n/a X

Ulmer et al. (2016) X X X X X

Spatial-Temporal Rollout Policy πrτ X X X X X X X

explicit consideration to feasible vehicle destinations and then employ a greedy procedure to as-

sign or reject service requests, e.g., the insertion method employed by Thomas (2007). An n/a

label in the “Subset Selection” column indicates the problem requires all requests receive service

by the vehicles. A check mark in the “Online” column indicates some or all of the calculation

required to select a decision is conducted on-the-fly when the policy is executed. For example, the

sample-scenario planning of Bent and Van Hentenryck (2004) is executed in real time via online

simulations. A check mark in the “Offline” column indicates some or all calculation required to

select a decision is conducted prior to policy execution. For instance, the VFAs of Meisel (2011)

are determined prior to policy implementation by means of offline simulation.

Notably, only our spatial-temporal rollout policy incorporates online and offline methods to

both direct vehicle movement and assign a service requests to the vehicle. Further, only our spatial-
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temporal rollout policy combines offline simulations’ ability to detect overarching MDP structure

with online simulations’ capacity to identify detailed MDP structure local to small portions of the

state space.

Table 1 classifies the anticipation mechanisms of the extant literature across four dimensions.

A check mark in the “Future Value” column indicates for each decision considered by the method,

the current-period value and the expected future value (or an estimate of the expected future value)

are explicitly calculated. For example, Ghiani et al. (2009) estimates via simulation a measure of

customers’ current and expected future inconvenience, whereas the simple rules of the early lit-

erature (e.g., first-come-first-serve) do not explicitly consider future value when directing vehicle

movement. A check mark in the “Stochastic” column indicates the method makes use of stochastic

information to select decisions. For instance, Hvattum et al. (2006)’s routing of both known cus-

tomer requests and potential future requests makes use of stochastic information, while Gendreau

et al. (1999)’s consideration of only known requests does not. A check mark in the “Temporal”

column indicates the method considers times of potential future customer requests when selecting

decisions. For example, Branke et al. (2005)’s a priori distribution of waiting time gives explicit

consideration to the likelihoods of future request times, but the waiting strategies of Mitrović-

Minić and Laporte (2004) do not. A check mark in the “Spatial” column indicates the method

considers locations of potential future customer requests when selecting decisions. For instance,

the sample-scenario planning of Bent and Van Hentenryck (2004) estimates service area coverage,

whereas Ulmer et al. (2016) focus exclusively on temporal anticipation. Excluding our own work,

only three of 18 methods anticipate future service requests across all four dimensions.

4 Offline-Online ADP Heuristic

In this section, we present an offline-online ADP heuristic to dynamically route vehicles. We begin

in §4.1 by describing the offline component, the temporal VFA of Ulmer et al. (2016). Then, in

§4.2, we embed the offline VFA in an online rollout algorithm. As the computational experiments

of §6 suggest, the offline-online combination leads to temporal-spatial anticipation and to better

decision-making. Then, in §4.3, we discuss the combination of VFAs and rollout generally, pro-

viding a condition sufficient to guarantee a VFA-based rollout policy performs at least as well as
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the VFA policy in isolation.

Our motivation for combining online and offline methods is two-fold. First, we aim to add spa-

tial anticipation to the temporal VFA of Ulmer et al. (2016), yielding a method that anticipates cus-

tomer requests and routing developments over time and across the service region. Second, though

in principle both temporal and spatial anticipation might be achieved via pure offline or online

approaches, our experience suggests VFA becomes prohibitive when considering more than a few

aspects of the state variable and online simulations likewise become prohibitive when significant

anticipation is executed on-the-fly. Our offline-online approach aims to deliver temporal-spatial

anticipation with reduced on-the-fly computation.

In this section and through the remainder of the paper we operate on a subset X̄ (sk) ⊆ X (sk)

of the feasible decisions in a given state sk. We focus on assignment decisions by disallowing wait-

ing and by making routing decisions via cheapest insertion, thereby increasing the computational

tractability of our offline-online ADP heuristic and of the benchmark policies. In the Appendix,

we detail the simplification and provide a rationale.

4.1 Offline Temporal VFA

Ulmer et al. (2016) base their offline approach on the well-known value functions, formulated

around the post-decision state variable:

V (sxk) = E
[

max
x∈X (sk+1)

{
R(sk+1, x) + V (sxk+1)

} ∣∣∣∣sxk] . (5)

Although solving equation (5) for all post-decision states sxk in each decision epoch k = 0, . . . , K−

1 yields the value of an optimal policy, doing so is computationally intractable for most problems

of practical interest (Powell, 2011). Thus, Ulmer et al. (2016) develop a VFA by focusing on

temporal elements of the post-decision state variable. Specifically, Ulmer et al. (2016) map a post-

decision state variable sxk to two parameters, the time of arrival to the vehicle’s current location tk

and time budget bk, the duration limit T less the time required to service all assigned customers in

C̄xk and return to the depot.

Representing their approximate value function as a two-dimensional lookup table, Ulmer et al.

(2016) use AVI (Powell, 2011) to estimate the value of being at time tk with budget bk. Ulmer
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Figure 3: Temporal Value Function Approximation

et al. (2016) build on the classical procedure of iterative simulation, optimization, and smoothing

by dynamically adjusting the granularity of the look-up table. At each iteration of the AVI pro-

cedure, along a given sample path of customer requests, the look-up table is employed to make

Bellman-style decisions, selecting assignment and movement actions that maximize the sum of the

immediate reward plus the reward-to-go, as given by the look-up table. Following each simulation,

look-up table entries are updated and portions of the look-up table may be subdivided for further

exploration in subsequent iterations. The procedure terminates after a given number of iterations.

Figure 3 illustrates the potential evolution of a look-up table across an application of AVI. In

Figure 3a, dimensions tk and bk are each subdivided into two regions and the value of each time-

budget combination is initialized. Figure 3b illustrates the lookup table mid-procedure, where

the granularity is less coarse and the estimates of the expected rewards-to-go have been updated.

Figure 3c depicts the final VFA, which we denote by V̂τ (tk, bk), where we use the Greek letter τ to

indicate “temporal.” Dynamically identifying important time-budget combinations in this fashion

allows the value iteration to focus limited computing resources on key areas of the lookup table,

thereby yielding a better VFA.

Following the offline learning phase of the VFA, V̂τ (tk, bk) can be used to execute a dynamic
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routing scheme. When the process occupies state sk, the temporal VFA decision rule is

X
π
V̂τ

k (sk) = arg max
x∈X̄ (sk)

{
R(sk, x) + V̂τ (tk, bk)

}
. (6)

Figure 2b depicts equation (6), illustrating the rule’s consideration of each decision’s period-k

reward R(sk, x) plus V̂τ (tk, bk), the estimate of the expected reward-to-go from the post-decision

state. The VFA policy πV̂τ is the sequence of decision rules (X
π
V̂τ

0 , X
π
V̂τ

1 , . . . , X
π
V̂τ

K ). Thus, using

only temporal aspects of the state variable, VFA V̂τ (·, ·) can be used to dynamically route a vehicle

and assign customers via the policy πV̂τ . For further details, we refer the reader to Ulmer et al.

(2016).

4.2 Online Rollout Algorithm

Rollout algorithms, introduced by Bertsekas et al. (1997), aim to improve the performance of a base

policy by using that policy in a current state to approximate the rewards-to-go from potential fu-

ture states. Taking πV̂τ as the base policy, we use a post-decision rollout algorithm to approximate

rewards-to-go from the post-decision state (Goodson et al., 2015). Because a rollout algorithm

explicitly builds a portion of the decision tree, the resulting rollout policy is anticipatory by defini-

tion. Thus, as the computational experiments of §6 verify, a rollout algorithm built on policy πV̂τ
may include more spatial information than πV̂τ in isolation. Further, building a rollout algorithm

on the temporal VFA of Ulmer et al. (2016) combines offline VFAs’ ability to detect overarching

MDP structure with online rollout algorithms’ capacity to identify detailed MDP structure local to

small portions of the state space.

From a given post-decision state sxk, the rollout algorithm takes as the expected reward-to-go the

value of policy πV̂τ from epoch k onward, E[
∑K

i=k+1 R(si, X
π
V̂τ

i (si))|sxk], a value we estimate via

simulation. Let C̃h = (C̃h1 , C̃h2 , . . . , C̃hK) be the sequence of service request realizations associated

with the hth simulation trajectory and let V π
V̂τ (sxk, h) =

∑K
i=k+1 R(si, X

π
V̂τ

i (si), C̃hi ) be the reward

accrued by policy πV̂τ in periods k + 1 through K when the process occupies post-decision state

sxk and service requests are C̃h. Then, the expected reward of policy πV̂τ from state sxk onward, is

estimated as the average value across H simulations: V π
V̂τ (sxk) = H−1

∑H
h=1 V

π
V̂τ (sxk, h).

Figure 4 illustrates the online and offline aspects of the post-decision state estimate of the
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expected reward-to-go calculation. The hth sample path begins from state sxk, evolves via decisions

from the offline VFA policy πV̂τ and the randomly generated service request realizations C̃h, and

concludes at a terminal post-decision state. The rewards collected along the hth sample path are

summed to calculate V π
V̂τ (sxk, h) and the average across all simulations yields V π

V̂τ (sxk).

Given post-decision estimates of the expected rewards-to-go, the rollout decision rule is

Xπrτ
k (sk) = arg max

x∈X̄ (sk)

{R(sk, x) + V π
V̂τ (sxk)} . (7)

Figure 2c depicts equation (7), which is implemented in online fashion for realized states. Specif-

ically, when the process occupies a current state sk, a decision is selected by enumerating the

feasible decision set X̄ (sk). Then, for each decision x, R(sk, x) is calculated and a transition is

made to post-decision state sxk where V π
V̂τ (sxk) is computed via the method illustrated in Figure 4.

A decision is selected that maximizes the sum of the current-period reward and the estimated

reward-to-go. The rollout policy πrτ is the sequence of decision rules (Xπrτ
0 , Xπrτ

1 , . . . , Xπrτ
K ). For

further details on post-decision rollout, we refer the reader to Goodson et al. (2015).
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4.3 VFA-Based Rollout Improvement

In addition to serving as a computationally tractable mechanism to incorporate spatial-temporal

information into heuristic decision-making for the VRPSSR, our combination of VFAs and rollout

algorithms points to the potential of using offline and online methods in tandem as a hybrid ADP

procedure. With an eye toward offline-online ADP as a general method, we demonstrate that under

a mild condition offline-online decision-making can yield rollout policy performance as good as

or better than its base policy performance in expectation. For context, we continue to notate the

offline base policy as πV̂τ and the online post-decision rollout policy as πrτ , but emphasize the

discussion extends to more general base and rollout policies.

Our result draws on Goodson et al. (2015), who define a rollout policy πrτ to be rollout improv-

ing with respect to base policy πV̂τ if E[
∑K

k=0R(sk, X
π
V̂τ

k (sk))|s0] ≤ E[
∑K

k=0 R(sk, X
πrτ
k (sk))|s0],

meaning the expected reward of the rollout policy is greater than or equal to the expected reward

of the base policy. As Goodson et al. (2015) discuss, one way to achieve the rollout improvement

property is via a sequentially consistent base policy, a policy that always makes the same deci-

sions for a given sequence of states induced by the same sequence of stochastic realizations. The

sequence of actions and realizations is called a sample path.

A sequentially consistent base policy can be characterized by the set of sample paths induced by

policy πV̂τ from state s onward, i.e., the collection of trajectories through all possible realizations

of service requests where actions are selected via policy πV̂τ . For any state s′ on any of these initial

sample paths, consider a second set of sample paths induced by policy πV̂τ from state s′ onward.

If the initial set of sample paths, from s′ on, is identical to the second set of sample paths, and if

the equivalence holds for all s and for all possible s′, then the base policy is said to be sequentially

consistent. Goodson et al. (2015) demonstrate sequential consistency as a sufficient condition to

achieve rollout improvement.

We define a VFA decision rule X
π
V̂τ

k to be deterministic if it returns the same decision every

time it is applied in the same state. Proposition 1 states that deterministic VFA decision rules lead

to sequentially consistent VFA policies, thus by the results of Goodson et al. (2015) yielding roll-

out policies that weakly improve over the base policy.
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Proposition 1 (Sequentially Consistent VFA Policy). If VFA decision rule X
π
V̂τ

k is deterministic,

then VFA policy πV̂τ is sequentially consistent.

Proof. Let s be a state in the state space and let s′ be a state such that it is on a sample path

induced by VFA policy πV̂τ applied in state s. Let k′ index the decision epoch associated with

state s′. By the assumption that X
π
V̂τ

k is deterministic for all k, the sequence of decision rules

(X
π
V̂τ

k′ , X
π
V̂τ

k′+1, . . . , X
π
V̂τ

K ) from epoch k onward is always the same. Because the argument holds for

all s and s′, the VFA policy πV̂τ satisfies Definition 10 of Goodson et al. (2015) and is sequentially

consistent.

With some care, VFA decision rule X
π
V̂τ

k can be made deterministic. Provided VFA V̂τ (tk, bk)

always returns the same value for a given time tk and budget bk, and provided ties in decisions

achieving the maximum value in equation (6) are broken the same way each time the decision rule

is applied to the same state, then X
π
V̂τ

k is deterministic. Because the guaranteed improvement of

the rollout policy over the VFA base policy depends on the exact calculation of the base policy’s

expected reward-to-go (Goodson et al., 2015), we anticipate the benefits of sequentially consis-

tent VFA policies to become more pronounced as the number of simulations H increases, thus

making V π
V̂τ (sxk) a more accurate estimate of E[

∑K
i=k+1R(si, X

π
V̂τ

i (si))|sxk]. In the computational

experiments of §6, H = 16 simulations is sufficient to observe improvement of πrτ over πV̂τ .

Beyond the rollout improvement resulting from a deterministic VFA decision rule, the results

of Goodson et al. (2015) imply that post-decision and one-step rollout policies built on a VFA

policy with deterministic decision rules yield the same value. In contrast to the decision rule

of equation (7), which approximates expected rewards-to-go via policy πV̂τ applied from post-

decision states, a one-step decision rule applies policy πV̂τ in all possible states at the subsequent

decision epoch. Because customer locations and service request times may follow a continuous

probability distribution, from a given post-decision state, the number of positive-probability states

in the subsequent decision epoch may be infinite, thereby rendering a one-step rollout algorithm

computationally intractable. Thus, when VFA policy πV̂τ is sequentially consistent, the value

of post-decision rollout policy πrτ behaves as if its decision rules were able to look a full step

ahead in the MDP, rather than looking ahead only to the post-decision state. Similar to the rollout

improvement property, equivalence of post-decision and one-step rollout policies depends on the
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exact calculation of the base policy’s expected reward-to-go, thus the result is more likely to be

observed as the number of simulations H is increased.

Finally, although stated in notation specific to the VRPSSR and VFAs, we emphasize Proposi-

tion 1 is broadly applicable: any base policy composed of deterministic decision rules is sequen-

tially consistent. Thus, any policy composed of deterministic functions mapping states to the space

of feasible decisions is sequentially consistent and achieves the rollout improvement properties of

Goodson et al. (2015). In addition to VFAs, such functions might take the form of a math program

where stochastic quantities are replaced with their mean values, a local search on a priori policies,

or a threshold-style rule based on key parameters of the state variable. We believe viewing policy

construction in this way – as a concatenation of decision rules – may simplify the task of identify-

ing feasible MDP policies. Further, although, as Goodson et al. (2015) illustrate, non-sequentially

consistent heuristics do not necessarily yield poor performance, making the effort to construct poli-

cies via deterministic decision rules provides immediate access to much of the analysis laid out by

Goodson et al. (2015).

5 Benchmark ADP Heuristic

To gauge the performance of the offline-online method, we consider the performance of four ad-

ditional policies: a spatial VFA, a myopic policy, and the incorporation of both into post-decision

rollout algorithms. We describe these methods in §5.1 and §5.2, respectively.

5.1 Spatial VFA

Although the temporal VFA of Ulmer et al. (2016) yields computationally-tractable, high-quality

policies, its reward-to-go approximation does not utilize spatial information. Explicit consideration

of service area coverage may be important, for example, when budget bk is low. In this scenario, the

VFA of Ulmer et al. (2016) may assign a low value to the approximate reward-to-go. However, the

true value may depend on the portion of the geographic area covered by the sequence of assigned

customers C̄xk . Depending on the likelihood of service requests across time and space, a routing of

the assigned customers spread out across a large area versus confined to a narrow geographic zone

may be more able to accommodate additional customer calls and therefore be more valuable.

20



The spatial VFA we propose in this section explicitly considers service area coverage via on-

line routing and simulation. Interestingly, preliminary testing of offline ADP methods based on a

variety of spatial features did not provide competitive results. Though the literature (Branke et al.,

2005; Meisel, 2011) points to offline spatial VFAs, these methods are applied to problem instances

with only a few customers and do not scale well to the larger problem instances we consider.

Influenced by the work of Bent and Van Hentenryck (2004), our spatial VFA approximates

the post-decision state reward-to-go of equation (5) via simulation of service calls and heuristic

routing of those requests. Let C̃p = (C̃p1 , C̃
p
2 , . . . , C̃

p
K) be the sequence of service request realiza-

tions associated with the pth simulation trajectory and let C̃p(k) =
⋃K
i=k C̃

p
i be the union of the

service requests in periods k through K. From a post-decision state sxk, we use cheapest inser-

tion (Rosenkrantz et al., 1974) to construct a route beginning at location ck at time tk, through the

set of assigned customers C̄xk , and through as many service requests as possible in set C̃p(k + 1)

such that the vehicle returns to the depot no later than time T . The routing procedure assumes

requests in C̃p(k+ 1) may be serviced during any period, thus ignoring the times at which services

are requested and constructing a customer sequence based solely on spatial information. Letting

Qp be the number of requests in C̃p(k + 1) successfully routed in sample p, the spatial VFA is

V̂σ(ck, C̄xk ) = P−1
∑P

p=1Q
p, where we use the Greek letter σ to indicate “spatial.”

Figure 5 illustrates the process of simulation and routing. The center portion of Figure 5 depicts

the set of requests C̃p(k+ 1) associated with the pth simulation as well as a route from the vehicle’s

current location ck at time tk = 02:00 hours after the start of work, through the ordered set C̄xk ,

and ending at the depot no later than 6:00 hours after the start of work. Similar to Figure 1, in

this example the vehicle traverses a Manhattan-style grid where each unit requires 00:15 hours of

travel time. The right-most portion of Figure 5 shows the cheapest insertion routing of the requests

in C̃p(k + 1). In this example, three of the four requests comprising C̃p(k + 1) are successfully

routed, thus Qp = 3. Repeating this process across all P simulations, then averaging the results,

yields V̂σ(ck, C̄xk ).

In contrast to offline temporal VFA V̂τ (·, ·), spatial VFA V̂σ(·, ·) is executed online. To identify

a dynamic routing plan, sample requests are generated as needed and reward-to-go estimates are

calculated only for post-decision states reachable from a realized current state sk. When the process

occupies state sk, the spatial VFA decision rule is
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Figure 5: Spatial Value Function Approximation

X
π
V̂σ

k (sk) = arg max
x∈X̄ (sk)

{
R(sk, x) + V̂σ(ck, C̄xk )

}
. (8)

The VFA policy πV̂σ is the sequence of decision rules (X
π
V̂σ

0 , X
π
V̂σ

1 , . . . , X
π
V̂σ

K ).

Similar to equation (7), the rollout decision rule based on the spatial VFA is

Xπrσ
k (sk) = arg max

x∈X̄ (sk)

{R(sk, x) + V π
V̂σ (sxk)} , (9)

where the post-decision estimate of the reward-to-go is computed as in the method of Figure 4,

except decisions on each sample path are made via policy πV̂σ instead of via the temporal VFA

policy. The rollout policy πrσ is the sequence of decision rules (Xπrσ
0 , Xπrσ

1 , . . . , Xπrσ
K ).

5.2 Myopic

We consider a myopic policy to gauge the other policies on their potential for anticipatory decision-

making. The decision rule associated with myopic policy πm selects a decision that maximizes

the current-period reward: Xπm
k = arg maxx∈X̄ (sk){R(sk, x)}. The decision rule associated with

myopic-based rollout policy πrm is analogous to equation (7), with the second term estimating the

reward-to-go of myopic policy πm via H simulations. Myopic policies often yield poor perfor-

mance because they ignore the future impact of current-period decisions. Though, as we show in

the computational experiments of §6, πrm improves significantly over πm, giving a more competi-

tive benchmark for the offline-online ADP heuristic.

22



6 Computational Experiments

We outline problem instances in §6.1 followed by a discussion of computational results in §6.2.

All methods are coded in Java and executed on 2.4GHz AMD Opteron dual-core processors with

8GB of RAM.

6.1 Problem Instances

We develop a collection of problem instances by varying the size of the service region, the ratio

of early-request to late-request customers, and the locations of requests. We consider two service

regions C, a large 20-kilometer-square region and a medium 15-kilometer-square region, each with

a centrally-located depot.

We treat the number and location of customer requests as independent random variables. Set-

ting the time horizon T to 360 minutes, the number of late-request customers in the range [1, T ]

follows a Poisson process with parameter λ customers per T − 1 minutes. Thus, the number of

customers in set C̃k+1 requesting service in the range (tk, tk+1] is Poisson-distributed with parame-

ter λ(tk+1− tk)/(T − 1). We consider three values for λ: 25, 50, and 75, which we refer to as low,

moderate, and high, respectively. The number of early-request customers in set Cearly, observed

prior to the start of the time horizon, is Poisson-distributed with rate 100 − λ. Hence, in each

problem instance the total number of early- plus late-request customers is Poisson-distributed with

parameter 100. Though we consider only a single work period, rejected requests may be included

in the early-request customers the following period. The performance of our algorithm on these

instances permits such a policy, given the number of rejected requests is typically no larger than

the number of early-request customers.

We consider three distributions for customer locations: uniformly distributed across the service

area, clustered in two groups, and clustered in three groups. When customers are clustered, service

requests are normally distributed around cluster centers with a standard deviation of one kilometer.

Taking the lower-left corner of the square service region to be the origin, then for large service areas

and two clusters, centers are located at coordinates (5, 5) and (5, 15) with units set to kilometers.

For large service areas and three clusters, centers are located at coordinates (5, 5), (5, 15), and

(15, 10). For medium service regions, cluster centers and standard deviations are scaled by 0.75.
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When requests are grouped in two clusters, customers are equally likely to appear in either cluster.

When requests are grouped in three clusters, customers are twice as likely to appear in the second

cluster as they are to appear in either the first or third cluster. Although requests outside of the

service area are unlikely, such customers are included in realizations of problem instances.

For all problem instances, the travel time d(·, ·) between two locations is the Euclidean distance

divided by a constant speed of 25 kilometers per hour and rounded up to the nearest whole minute.

We set the base time unit t̄ to one minute.

All combinations of service area, proportions of early- and late-request customers, and spatial

distributions yields a total of 18 problem instances. For each problem instance, we generate 250

realizations of early- and late-request customers and use these realizations to estimate the expected

rewards achieved by various policies.

6.2 Discussion

In this section we examine the performance of the offline-online ADP heuristic by comparing

policy πrτ to temporal policy πV̂τ , spatial policy πV̂σ , myopic policy πm, and to rollout policies

πrσ, and πrm across the problem instances of §6.1.

Table 2 presents estimates of the expected number of late-request customers serviced by each

policy across medium and large service areas; low, moderate, and high values of λ; and uniform,

two-cluster, and three-cluster customer locations. Values in parantheses are the standard errors.

Each figure is an average of the reward collected across the 250 realizations of the corresponding

problem instance. The offline VFA associated with policies πV̂τ and πrτ is obtained via 1,000,000

iterations of AVI and a disaggregation threshold of 1.5 (Ulmer et al., 2016). We use P = 16

simulations to calculate reward-to-go estimate V̂σ(·, ·) for policy πV̂σ . For rollout policies πrm and

πrτ we use H = 16 simulations to calculate reward-to-go estimate V π
V̂ . Increasing P and H

beyond these values leads to higher computation times with relatively little gain in reward. For

rollout policy πrσ we use P = 4 simulations to calculate V̂σ(·, ·) and H = 16 simulations to

calculate V π
V̂σ . Even at these values of P and H , the computation time required to execute policy

πrσ across all realizations of each problem instance is high, pushing the capacity of our resources.

Additionally, each of the P sample trajectories is drawn randomly whenever V̂σ(·, ·) is calculated,

thus πV̂σ is not a sequentially consistent base policy.
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Table 2: Expected Numbers of Late-Request Customers Served and Standard Errors

Medium Service Area Large Service Area

Policy Low λ Moderate λ High λ Low λ Moderate λ High λ

Customers Located Uniformly

πm 11.8 (±0.3) 25.3 (±0.3) 40.5 (±0.3) 0.2 (±0.0) 8.1 (±0.4) 27.7 (±0.3)

πV̂τ
12.9 (±0.3) 29.0 (±0.3) 45.0 (±0.3) 0.2 (±0.0) 11.3 (±0.5) 34.8 (±0.3)

πV̂σ
12.6 (±0.3) 28.5 (±0.3) 45.1 (±0.3) 0.2 (±0.1) 10.7 (±0.5) 33.3 (±0.3)

πrm 12.7 (±0.3) 28.2 (±0.3) 44.2 (±0.3) 0.2 (±0.1) 10.6 (±0.5) 32.9 (±0.3)

πrτ 12.9 (±0.3) 29.2 (±0.3) 45.7 (±0.3) 0.2 (±0.1) 11.3 (±0.5) 34.8 (±0.3)

πrσ 12.8 (±0.3) 28.6 (±0.3) 44.9 (±0.3) 0.2 (±0.1) 11.1 (±0.5) 34.0 (±0.3)

Customers Located in Two Clusters

πm 21.8 (±0.3) 41.6 (±0.4) 57.4 (±0.4) 16.6 (±0.3) 31.4 (±0.3) 47.7 (±0.4)

πV̂τ
21.8 (±0.3) 41.3 (±0.4) 57.1 (±0.4) 16.7 (±0.3) 32.5 (±0.3) 50.1 (±0.4)

πV̂σ
21.7 (±0.2) 42.0 (±0.4) 58.4 (±0.4) 17.0 (±0.3) 33.4 (±0.3) 50.8 (±0.3)

πrm 21.8 (±0.3) 41.9 (±0.4) 57.8 (±0.4) 17.1 (±0.3) 33.6 (±0.3) 50.5 (±0.4)

πrτ 21.8 (±0.3) 42.3 (±0.4) 57.8 (±0.4) 17.1 (±0.3) 33.8 (±0.3) 51.7 (±0.4)

πrσ 21.8 (±0.2) 42.1 (±0.3) 58.4 (±0.4) 17.1 (±0.3) 33.8 (±0.3) 51.3 (±0.4)

Customers Located in Three Clusters

πm 20.5 (±0.2) 37.7 (±0.3) 54.1 (±0.4) 12.3 (±0.3) 27.6 (±0.4) 42.2 (±0.3)

πV̂τ
20.3 (±0.2) 37.2 (±0.3) 53.8 (±0.4) 13.4 (±0.3) 29.8 (±0.3) 45.1 (±0.3)

πV̂σ
20.5 (±0.2) 38.4 (±0.3) 55.6 (±0.4) 13.4 (±0.3) 29.8 (±0.3) 45.7 (±0.3)

πrm 20.8 (±0.2) 38.8 (±0.3) 55.0 (±0.4) 13.5 (±0.3) 29.9 (±0.3) 46.2 (±0.3)

πrτ 20.8 (±0.2) 38.9 (±0.3) 55.3 (±0.4) 13.6 (±0.3) 30.7 (±0.3) 47.0 (±0.3)

πrσ 20.7 (±0.2) 38.8 (±0.3) 55.7 (±0.4) 13.5 (±0.3) 30.5 (±0.3) 46.9 (±0.3)

Rollout Improvement

Grouped by customer location, Figure 6 aggregates over quantities in Table 2 to display the percent

improvement of policies πrm, πV̂τ , πrτ , πV̂σ , and πrσ over myopic policy πm. Each bar in Figure 6

depicts the improvement of a base policy (solid outline) over πm and any additional improvement

achieved by the corresponding rollout policy (dashed line).

Figure 6 demonstrates each rollout policy performs at least as well as its corresponding base

policy, a result predicted by Proposition 1 for policies πrτ and πrm. Further, with only one ex-

ception, the disaggregate results of Table 2 indicate policy πrσ improves upon non-sequentially
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Figure 6: Improvement Over Myopic Policy

consistent base policy πV̂σ . When customers are located uniformly across the medium service area

and λ is high, spatial policy πV̂σ achieves a reward 0.4 percent higher than that posted by rollout

policy πrσ, a discrepancy we expect would be remedied by increasing the number of simulations

H . Further, although πrm yields substantial improvement over πm (7.2 percent on average), we

observe higher expected rewards when the rollout algorithm is applied to base policies πV̂τ (9.1

percent on average) and πV̂σ (8.4 percent on average), each of which post performance superior to

that of the myopic policy. For a VRP with stochastic demand, Novoa and Storer (2008) similarly

observe that better base policies yield better rollout policies.

Figure 6 indicates improvement of rollout policy πrm over myopic policy πm is most pro-

nounced when customer locations are uniform over the service area. When requests are spread

randomly across the region, the high variability of customer locations can cause the greedy deci-

sion rule of policy πm to perform poorly, at times assigning requests separated by large distances

without considering the future impact of such decisions. As customer locations become more con-

centrated – from uniform to three clusters to two clusters – the likelihood of such short-sighted de-

cisions decreases, thus lessening the improvement achieved by the rollout algorithm’s look-ahead
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mechanism.

Figure 6 shows improvement of spatial-temporal rollout policy πrτ over temporal base policy

πV̂τ is most significant when customer locations are clustered. As additional experiments reveal

below, spatial anticipation is more important than temporal anticipation when requests are grouped.

Thus, as customer locations become more concentrated, the post-decision look-ahead of policy πrτ

has more opportunity to make up for the spatial anticipation absent in policy πV̂τ . The standard

errors in Table 2 support this observation. The difference between the values of policies πrτ and

πV̂τ is almost always significant when customers are clustered and is insignificant when customers

are uniformly distributed.

Similarly, Figure 6 depicts improvement of spatial-temporal rollout policy πrσ over spatial base

policy πV̂σ as being more substantial when customer locations are less concentrated, i.e., in three

clusters or uniform versus in two clusters. As we further explore below, we believe policy πrσ

adds temporal anticipation to policy πV̂σ , thus enhancing the spatial-only anticipation of the base

policy. However, as we discuss below, the high run times required to execute policy πrσ may limit

its practical use.

An important takeaway from Figure 6 is the ability of the post-decision rollout algorithm to

compensate for anticipation absent in the base policy. For example, as noted above, rollout pol-

icy πrτ adds spatial anticipation to temporal base policy πV̂τ . In particular, when customers are

clustered in two or three groups, the additional anticipation results in comparable performance to

rollout policy πrσ, thus suggesting similar levels of spatial-temporal anticipation may be achieved

by combining with a rollout algorithm either a temporal or spatial base policy. In contrast, when

customers are located uniformly across the service area, rollout policy πrσ is unable to match the

performance of temporal policy πV̂τ , much less that of rollout policy πrτ . These results, taken in

conjunction with the computational discussion below, point to rollout policy πrτ as the frontrunner

among the six policies we consider.

The high performance of policy πrτ may also be attributed to the combination of offline and

online ADP methods. The low-dimensional temporal VFA captures the overarching structure of

the MDP and the rollout algorithm observes MDP structure in full detail across medium portions

of the state space. Taken together, offline plus online methods allow policy πrτ to merge global

structure with local detail. In contrast, the spatial VFA underlying policy πrσ is an online ADP
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technique relying on a relatively small number of real-time simulations to approximate rewards-

to-go. Consequently, spatial VFA V̂σ(·, ·) may be unable to detect the overall patterns observed by

temporal VFA V̂τ (·, ·), potentially leading to lower expected rewards for policy πrσ.

Decreasing Computation via Offline-Online Tradeoffs

Organized similar to Table 2, Table 3 displays the average of the maximum CPU seconds required

to select a decision across all 250 realizations of the corresponding problem instance. We report

the average maximum CPU seconds (versus the overall average) to highlight the worst-case time

required to implement each policy in real time. For policies πV̂τ and πrτ , figures exclude offline

VFA computation.

Across all policies, for a given service region and customer location distribution, CPU require-

ments tend to increase by an order of magnitude as λ moves from low to moderate and then again

as λ moves from moderate to high. These increases in computing time are driven by an increase in

the number of feasible decisions in the set X̄ (·), which tends to grow with larger numbers of late-

request customers. The highest CPU times belong to rollout policy πrσ. At a given decision epoch,

similar to rollout policies πrm and πrτ , policy πrσ uses H simulations to estimate the expected

reward-to-go from a given post-decision state. Additionally, along each of the H trajectories, base

policy πV̂σ employs P simulations to select a decision at each epoch. Thus, despite its high ex-

pected reward, policy πrσ may be impractical for real-time decision making. Even rollout policy

πrτ , which performs comparably to policy πrσ in the vast majority of Table 2 entries, may be of

limited practical use when λ is high. Below, we demonstrate how IZS can lower the computational

requirements of online decision-making, thereby making policy πrτ viable for real-time routing

and assignment decisions.

Seeking a reduction in the CPU requirements for rollout policy πrτ , we consider the combined

impact of offline and online computation on expected reward. In Table 4, we vary the number of

offline AVI iterations from zero (representing the myopic policy) up to 5,000,000 and the number

of online simulations H from two up to 128, including as a benchmark the performance of base

policy πV̂τ . Each entry in Table 4 is the average reward achieved across 250 realizations of the

problem instance characterized by a large service area, customers grouped in two clusters, and

high λ. Darker shades indicate higher expected rewards.
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Table 3: Maximum CPU Seconds to Select a Decision
Medium Service Area Large Service Area

Policy Low λ Moderate λ High λ Low λ Moderate λ High λ

Customers Located Uniformly

πm < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

πV̂τ
< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

πV̂σ
1.8 16.4 129.3 < 0.01 9.6 125.7

πrm 0.2 1.9 39.8 < 0.01 2.0 85.3

πrτ 0.6 3.7 46.7 < 0.01 5.3 113.5

πrσ 633.3 2862.1 22598.2 13.9 1592.6 39013.2

Customers Located in Two Clusters

πm < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.1

πV̂τ
< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.1

πV̂σ
1.8 13.8 88.7 2.0 17.6 175.6

πrm 0.2 2.4 50.9 0.3 5.2 410.5

πrτ 0.4 3.7 69.6 0.6 6.0 247.1

πrσ 786.7 3368.2 23761.6 774.5 3644.2 74884.9

Customers Located in Three Clusters

πm < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

πV̂τ
< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

πV̂σ
1.9 12.3 83.2 1.9 19.0 174.2

πrm 0.2 1.4 14.5 0.2 2.7 84.8

πrτ 0.5 2.3 29.1 0.6 4.4 96.4

πrσ 759.5 2942.8 21243.9 663.4 3917.4 47749.1

Table 4 illustrates the potential benefit of using offline VFA and online rollout algorithms in

tandem as a hybrid ADP procedure. The lower-left and upper-right entries in the body of Table 4

represent pure offline and pure online policies, respectively, the rollout policy with H = 128

simulations yielding a 3.8 percent improvement over the temporal VFA policy with 5,000,000 AVI

iterations. Complementing offline computation with online computation and vice versa eventually

leads to improved rewards, the highest of which is achieved in the lower-right entry of Table 4

with an expected reward of 52.7. This improved reward comes with a cost, however: H = 128

online simulations combined with 5,000,000 offline AVI iterations may require as many as 1864

CPU seconds at a given epoch, an impractical figure for real-time decision-making.
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Table 4: Impact of Offline Computation on Online Performance

Online Simulations (H)

Offline AVI Iterations πV̂τ 2 4 8 16 32 64 128

0 47.7 46.0 47.2 49.0 50.5 51.3 51.7 52.0

1,000 43.0 44.2 45.5 47.3 49.0 50.4 51.6 52.0

10,000 46.2 45.3 46.9 48.6 50.2 51.5 51.7 52.3

100,000 49.4 47.4 48.6 50.0 51.0 51.6 52.2 52.3

1,000,000 50.1 48.2 49.4 50.5 51.7 52.3 52.5 52.5

5,000,000 50.1 48.5 49.5 50.7 51.7 52.2 52.3 52.7

Moving away from the extreme entries of Table 4 reveals how offline computation can com-

pensate for reduced online computation. For instance, when H = 64 simulations are used in

conjunction with 0 offline AVI iterations, rollout policy πrτ yields an expected reward of 51.7.

A comparable reward is achieved with H = 16 online simulations and 1,000,000 offline AVI

iterations. Further, shifting computational effort offline reduces the maximum per epoch online

CPU seconds from 1521 to 295, likely a manageable figure for real-time decision-making. Thus,

when time to make decisions is limited, increasing offline computation can make up for necessary

decreases to online computation.

Decreasing Computation via Indifference Zone Selection

In addition to shifting computation from online to offline, online CPU time may be further reduced

via IZS. Developed by Kim and Nelson (2001, 2006), IZS may be employed to reduce the com-

putation required to identify, from a given state sk, the decision in X̄ (sk) leading to the largest

expected reward-to-go. In particular, in equation (7), IZS may require fewer than H simulations to

calculate V π
V̂τ (sxk).

IZS is executed in three phases. In the first phase, for all decisions x in X̄ (sk), V π
V̂τ (sxk) is

initialized via ninitial simulations. The second phase identifies, with confidence level 1 − α, the

reward-to-go estimates falling within δ (the indifference zone) of the maximum. The third phase

discards all V π
V̂τ (sxk) not meeting the phase-two threshold and refines the remaining reward-to-go
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Figure 7: Impact of Indifference Zone Selection on Rewards and CPU Times

estimates via an additional simulation. IZS iterates between phases two and three until only one

reward-to-go estimate remains – in which case the procedure returns the corresponding decision

– or until the total number of simulations reaches nmax – in which case the procedure returns the

decision with the highest reward-to-go estimate. Setting parameter nmax to H ensures at most H

simulations (and potentially many fewer) are employed to estimate the reward-to-go from each

post-decision state.

To illustrate the potential benefits of IZS, we apply the procedure via rollout policy πrτ to

the problem instance with the highest computation times, the instance characterized by a large

service region, customer locations grouped in two clusters, and high λ. We set the indifference

zone to δ = 1, the confidence parameter to α = 0.01, and the maximum number of simulations to

nmax = 128. Figure 7 displays the impact of IZS on CPU times and on rewards as the number of

initial simulations ninitial takes on values 2, 4, 8, 16, 32, 64, and 128. As a benchmark to the IZS

procedure, we include in Figure 7 the results of fixing to H the number of simulations employed

to calculate V π
V̂τ (·). The value of ninitial or H is displayed adjacent each point in Figure 7.

Figure 7 suggests IZS can achieve rewards better than or comparable to a fixed-simulation

implementation, but with potentially lower CPU times. Notably, setting the number of fixed simu-
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lations toH = 128 yields an expected reward of 52.58 and a maximum CPU time of 1903 seconds.

In contrast, IZS with the number of initial simulations set to ninitial = 4 achieves an expected re-

ward of 52.10 and a maximum CPU time of 127 seconds. Thus, a 93.3 percent reduction in CPU

time can be achieved with only a 0.9 percent decrease in reward. Further, as ninitial increases to

32 and beyond, IZS tends to terminate with ninitial total iterations, thus yielding rewards similar to

those of the fixed-simulation implementation. Consequently, if per-epoch CPU time is prohibitive

when the number of simulations is fixed, the results of Figure 7 suggest IZS with ninitial < H may

significantly reduce computation with only marginal detriment to policy quality.

We note the randomly sampled trajectories vary from one simulation to the next, thus decisions

taken by the same policy may vary from one realization to another. Consequently, even when ninitial

and H are set to equivalent large numbers, results may differ slightly.

Temporal vs. Spatial Anticipation

Finally, we examine the impact of spatial and temporal information on anticipation. In particular,

we compare the performance of temporal policy πV̂τ to that of spatial policy πV̂σ . Per Table 2,

when customer locations are uniform over the service area, the expected number of late-request

customers serviced by policy πV̂τ is almost always greater than or equal to the expected reward

accrued by policy πV̂σ , thus suggesting current time tk and time budget bk are better predictors of

the reward-to-go than explicit information about customer locations and service area coverage. In

contrast, when customer locations are grouped in two or three clusters, policy πV̂σ almost always

outperforms policy πV̂τ , indicating current location ck and the tour through assigned customers C̄k
trump temporal considerations when approximating the value function.

To further investigate the impact of customer locations on the performance of temporal and spa-

tial policies, we construct a set of problem instances varying the proportion of customers located

in clusters and the proportion of customers uniformly distributed across the service area. Specifi-

cally, given a large service area and high λ, γ percent of customers are drawn from the two-cluster

location distribution and 100 − γ percent of the customers are drawn from the uniform location

distribution. Varying γ from zero to 100 by increments of 10, Figure 8 depicts for each problem

instance the ratio of the expected reward achieved by policy πV̂σ to that accrued by policy πV̂τ .

The upward trend in Figure 8 confirms the relationship suggested by the results of Table 2
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Figure 8: Impact of Customer Locations on Temporal and Spatial Policy Performance

and further suggests the performance of the spatial policy surpasses that of the temporal policy

when at least 80 percent of customer locations are clustered in two groups. Intuition suggests the

relationship of Figure 8 results from decreased variability in customer locations as the distribution

moves from uniform to clustered. Specifically, the sequences of service calls C̃p simulated to

calculate spatial VFA V̂σ(·, ·) are better approximations of actual request locations when customers

are grouped versus randomly dispersed over the service area. Thus, spatial information more

accurately anticipates rewards-to-go than temporal considerations when customer locations are

more predictable, but temporal information becomes key as location variability rises.

To conclude our discussion, we identify rollout policy πrτ as the all-around best among the

six policies considered in our experiments. Not only does policy πrτ achieve rewards at least as

high as the other policies, the computation can be shifted online or offline depending on available

computing resources and the time available to select decisions. Additional computing concessions

may be realized via IZS.
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7 Conclusion

Recognizing the VRPSSR as an important problem in urban transportation, we study heuristic so-

lution methods to obtain policies that dynamically direct vehicle movement and manage service

requests via temporal and spatial anticipation. Our work integrates predictive tools with prescrip-

tive optimization methods, making contributions to the vehicle routing literature as well as general

methodological contributions to the field of ADP:

First, our offline-online approach yields computationally-tractable, high-quality dynamic rout-

ing policies which achieve temporal-spatial anticipation by pairing with a rollout algorithm the

state-of-the-art temporal VFA. We observe the resulting rollout policies compensate for anticipa-

tion absent in the base policies. Second, we identify the geographic spread of customer locations

as a predictor of the success of temporal versus spatial anticipation, showing the latter performs

better as customer locations move from uniform to clustered across the service area. Third, our

combination of VFAs and rollout algorithms demonstrates the potential benefit of using offline

and online methods in tandem as a hybrid ADP procedure, making possible higher quality policies

with reduced computing requirements for real-time decision-making. Fourth, we identify a policy

improvement guarantee applicable to VFA-based rollout algorithms, thus explaining why improve-

ment over the underlying VFA policy can be expected. Our result is broadly applicable: any base

policy composed of deterministic decision rules is a sequentially consistent heuristic. Fifth, our

work is the first to combine rollout algorithms with IZS, significantly reducing the computation

required to evaluate rewards-to-go without degrading policy quality.

Future research might extend our work to dynamic VRP variants. For example, vehicle travel

times tend to vary not only spatially but across time, thus a combination of spatial and tempo-

ral anticipation may yield high-quality dynamic routing policies when travel times are uncertain.

Additionally, the demand for bicycles across a bike-sharing network fluctuates based on location

and time-of-day, thereby suggesting spatial-temporal anticipation may be helpful when devising

inventory-routing policies to coordinate bike movement. An alternative direction for future re-

search might be to explore enhancements to offline-online ADP methods. For example, in our

work we identify VFAs offline and then embed the VFAs in an online rollout algorithm. It may be

possible to iteratively improve the VFAs based on the performance of the rollout algorithm, per-
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haps by updating VFA parameters if the rollout policy yields significantly different rewards than

the VFA policy.
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Appendix

Decision Space Reduction

Because the size of feasible action set X (sk) may increase exponentially with |C̄k| and |C̃k| and

because condition (4) may be computationally prohibitive to check, our offline-online heuristic

operates on a subset X̄ (sk) ⊆ X (sk) obtained by making two adjustments. First, we disallow

waiting. Our experience suggests explicit consideration of the waiting decision significantly in-

creases computation without leading to substantially better policies (Ulmer et al., 2016). Second,

we take C̄k to be an ordered set, fix the sequence of assigned customers composing C̄k, and use

cheapest insertion of the customer requests in C̃k as a proxy for condition (4). Specifically, for a

given value of binary vector a in condition (1), a route is constructed by inserting the customers in

C̃ ′k into C̄k via standard cheapest insertion (Rosenkrantz et al., 1974) with the constraint that current

location ck begin the sequence. The vehicle’s next location c associated with this value of a is the

second element of the cheapest insertion route, the element immediately following current location

ck. If the travel time of the resulting route is less than or equal to the remaining time T − tk, then

the decision belongs to X̄ (sk), otherwise it is excluded. Finally, the decision selected from X̄ (sk)

determines the sequence of assigned customer requests for the next decision epoch. The initial

sequencing of the early-request customers Cearly is also performed via cheapest insertion.

Although reducing the space of decisions in this fashion improves the computational tractabil-

ity for our offline-online ADP heuristic, it is possible that neglecting alternative routing sequences

may remove from consideration decisions leading to higher objective values. However, the litera-

ture suggests sophisticated routing methods do not necessarily lead to substantially better outcomes
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(Powell et al., 2000; Goodson et al., 2016). In particular, for the VRPSSR we observe only minor

improvement when replacing the cheapest insertion route with a route corresponding to an optimal

solution of an open traveling salesman problem, a computationally-intensive routing procedure.

40


