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Abstract

We develop a family of rollout policies based on fixed routes to obtain dynamic solutions to the

vehicle routing problem with stochastic demand and duration limits (VRPSDL). In addition to

a traditional one-step rollout policy, we leverage the notions of the pre- and post-decision state

to distinguish two additional rollout variants. We tailor our rollout policies by developing a dy-

namic decomposition scheme that achieves high quality solutions to large problem instances

with reasonable computational effort. Computational experiments demonstrate that our rollout

policies improve upon the performance of a rolling horizon procedure and commonly em-

ployed fixed-route policies, with improvement over the latter being more substantial.

Keywords: rollout policy; approximate dynamic programming; stochastic vehicle routing; fixed

routes

1 Introduction

Vehicle routing problems (VRPs) with stochastic demand underlie many operational challenges

in logistics and supply chain management. For example, in less-than-truckload operations, an

estimate of customer demands may be available at the time vehicle routes are planned, but ac-

tual demands often differ from the initial estimate (Bertsimas and Simchi-Levi, 1996). Similarly,

in vendor-managed beverage distribution systems, actual inventory levels are first observed upon

arrival to customers, which may consist of a network of restaurants, grocery stores, and fueling sta-

tions (Erera et al., 2009). In such cases, vehicle capacity may be inadequate to fully serve demand,
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resulting in a route failure requiring the vehicle to return to a central depot to replenish capacity

before continuing to service customers.

A common approach to handle uncertainty in customer demands is to restrict attention to a

priori, or fixed-route, policies (see Campbell and Thomas (2008) for a review). A fixed-route

policy requires vehicles to visit customers in the order specified by a set of pre-defined routes.

Fixed routes are routinely used in industry and create a regularity of service that can be beneficial

for both the customers and the drivers – customers may be served at roughly the same time each

day they require service, and the drivers become familiar with their routes. Because fixed-route

policies offer limited recourse actions in response to observed customer demands, finding a high-

quality fixed-route policy is often computationally attractive (e.g., see Yang et al. (2000) or Laporte

et al. (2002)).

While fixed-route policies can perform well on average, additional improvements may be ob-

tained by dynamically modifying the routing plan as customer demands become known. Recent

advances in communication technologies make such modifications possible, but the body of lit-

erature addressing dynamic routing schemes for VRPs with stochastic demand is small. With

operating margins between two and four percent in the trucking industry (American Trucking As-

sociation, 2009), even small improvements in productivity are significant. While there are always

concerns about operationalizing new methods, trucking companies are interested in even one to

two percent gains (personal communication, Zahir Balaporia, Director of Intermodal Operations

at Schneider National, August 15, 2011). The flat rates and rising costs characteristic of today’s

trucking industry (Wilson, 2011) further motivate the exploration of dynamic routing techniques

as a means to increase productivity.

The overarching contribution of this paper is the development of rollout policies to dynamically

manage multi-vehicle fleets when customer demands are stochastic. The literature describes rollout

policies to make dynamic decisions in related single-vehicle problems (e.g., Secomandi (2001) and

Novoa and Storer (2008)). However, the combinatorial growth in problem size experienced in the

multi-vehicle case makes it difficult to extend techniques from the single-vehicle literature to multi-

vehicle problems. Our work aims to fill this gap by exploring a family of rollout policies for the

vehicle routing problem with stochastic demand and duration limits (VRPSDL), a problem that

serves as a model for a variety of logistics and distribution problems encountered in practice.

We achieve promising results for the VRPSDL with a traditional, one-step rollout policy. How-

ever, because the state and action spaces grow combinatorially with problem size, our one-step

rollout policy is only practical for problems with 50 or fewer customers. To mitigate this com-

putational challenge, we develop a post-decision rollout policy that looks ahead from each post-

decision state, rather than from each pre-decision state at the next decision epoch (see Powell
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(2007) for a discussion of pre- and post-decision states). We also introduce a hybrid rollout policy

that reduces the computational burden of post-decision rollout by looking ahead from the current

pre-decision state and from select post-decision states.

The dynamic policies we obtain via one-step, post-decision, and hybrid rollout improve on

benchmark static fixed-route policies and on dynamic policies achieved by a rolling horizon updat-

ing procedure equivalent to applying our rollout algorithm in the pre-decision state. Improvement

over static fixed-route policies is more substantial than improvement over rolling horizon policies.

Yet, despite the introduction of the post-decision and hybrid methods, for the largest problem in-

stances, our rollout policies are computationally prohibitive to implement. To address this concern,

we explore decomposition schemes that reduce computation by implementing rollout policies in

single-vehicle problems, then using the resulting policies to manage a multi-vehicle fleet. In partic-

ular, we propose a dynamic decomposition scheme that builds on the static decomposition scheme

of Fan et al. (2006). In static decomposition, the set of customers to be served (although not neces-

sarily the order of service) by a particular vehicle is fixed at the beginning of the time horizon. Our

dynamic decomposition procedure potentially adjusts the decomposition at each decision epoch.

We show that dynamic decomposition is able to achieve high quality solutions for large problem in-

stances with reasonable run times, thereby suggesting that dynamic decomposition, coupled with

our rollout algorithms, is a strong candidate for making real-time dynamic routing decisions in

large-scale operations.

An important feature of a rollout algorithm is the heuristic used to approximate the reward-to-

go from a current state. The simple cyclic heuristic used for single-vehicle problems (Secomandi,

2001; Novoa and Storer, 2008) does not effectively extend to multi-vehicle problems. Therefore,

as an additional contribution, we base the look-ahead mechanism in our rollout policies on a local

search over a space of fixed-route policies. The development of this fixed-route heuristic includes

methods to both estimate and exactly calculate the expected demand served by a fixed-route policy.

Although our work focuses on the VRPSDL, it may be possible to adapt some of our problem-

specific ideas to general stochastic dynamic programs. In particular, the concept of a hybrid rollout

policy is not necessarily tied to the routing domain. Further, although our dynamic decomposition

scheme is tailored specifically for multi-vehicle routing problems, other types of problems may

contain structures that permit decomposition amenable to a rollout methodology. In Goodson et al.

(2012), we begin to explore these issues and propose a generalized rollout policy framework for

applying rollout methods to stochastic dynamic programs.

The remainder of the paper is organized as follows. In §2, we discuss literature addressing

dynamic policies for VRPs with stochastic demand. In §3, we formulate the VRPSDL as a Markov

decision process (MDP). In §4, we develop a fixed-route heuristic for the VRPSDL. In §5, we
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describe our rollout policies and decomposition procedures. We present computational results in

§6 and conclude the paper in §7.

2 Related Literature

The formulation underlying much of the literature for dynamic VRPs with stochastic demand is

that of Dror et al. (1989) and Dror (1993), who formulate a single-vehicle model as a MDP. The

objective of the formulation is to obtain a policy that minimizes expected travel cost subject to a

constraint on vehicle capacity. Beyond incorporating a route duration limit, we deviate from this

model in two additional ways. First, our model allows for multiple vehicles, which leads to a

larger state space and a significantly more complex action space. Second, as we discuss in §3, our

objective is to maximize expected demand served, rather than to minimize expected travel costs.

For problem instances of any practical size, obtaining optimal policies for Dror et al. (1989)’s

single-vehicle MDP is computationally intractable due to the well known “curse of dimensional-

ity” associated with dynamic programs. Thus, much of the literature focuses on heuristic solution

methods. Secomandi (2000) investigates an approximate policy iteration procedure that estimates

the cost-to-go via a parametric function. Such an approach, which is typical of more traditional

approximate dynamic programming, refines parameter estimates via simulation. Secomandi con-

cludes that a one-step rollout policy performs better than using a parametric function to approxi-

mate the cost-to-go. Secomandi (2000, 2001) develops a one-step rollout policy by establishing a

single fixed-route policy and repeatedly using it to approximate the cost-to-go for a given action

by computing the expected cost of cyclically following this fixed route (skipping customers whose

demand has been fully served). We note that Secomandi (2001) implements a one-step rollout

policy in a fashion that is computationally equivalent to the post-decision rollout approach artic-

ulated in this paper. This equivalency depends on the properties of the heuristic utilized by the

rollout algorithm (i.e., sequential consistency) and does not hold in general. Goodson et al. (2012)

establish conditions where equivalency between one-step and post-decision rollout exists for gen-

eral stochastic dynamic programs. We note that this equivalency is not an indicator of overall

effectiveness as the heuristic used by the rollout policies in this paper does not maintain sequential

consistency, yet achieves high quality computational results. Novoa and Storer (2008) take the

approach of Secomandi (2001) and show that using a higher quality initial fixed route leads to

improved policies. They also demonstrate that computation times can be reduced, without a loss

in solution quality, by using simulation to estimate the expected cost of following a fixed route.

As demonstrated by Fan et al. (2006), one way to address a multi-vehicle problem is to de-
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compose it into single-vehicle problems by first partitioning customers into groups (one for each

vehicle) and then applying Secomandi (2001) to each group; we refer to this method as static de-

composition. However, extending the method of Secomandi (2001) in this fashion has limitations.

In particular, static decomposition does not permit actions that assign vehicles to customers outside

of the initial partitions. In this paper, we explore a dynamic decomposition scheme that updates the

partitions at each decision epoch, thereby allowing customers to be shared across vehicles.

Secomandi and Margot (2009) suggest partial-reoptimization strategies for a constrained ver-

sion of Dror et al.’s single-vehicle model. The constraint requires each customer demand to be

serviced in full before proceeding to another customer, thereby reducing the size of the state space.

The state space is further reduced by heuristically selecting a promising set of states over which

an optimal policy is obtained. Applying a similar approach to a multi-vehicle problem is non-

trivial. Because the state and action spaces of multi-vehicle problems are exponentially larger than

those of single-vehicle problems, it is difficult to identify a promising set of states over which it is

computationally tractable to obtain an optimal policy.

Erera and Daganzo (2003) propose a partially-dynamic routing scheme for a multi-vehicle

VRP with stochastic demand. The procedure begins by serving customers furthest from the depot

via a set of fixed-route policies. Then, there is a one-time replanning of vehicle operations and

remaining customer demands are serviced via a new set of fixed-route policies. The rollout policies

described in this paper are more dynamic, potentially replanning routes whenever vehicle(s) arrive

at customer locations.

Hvattum et al. (2006, 2007) consider a multi-vehicle routing problem with stochastic demand

where customer orders are placed over a given time horizon. The problem is modeled as a multi-

stage stochastic programming problem with an objective of minimizing travel cost. Within this

framework, actions are selected at pre-defined stages through a sample-based heuristic. In our

rollout policies, we heuristically select actions whenever new information is learned. Additionally,

Hvattum et al. (2006, 2007) require customer demand to be served completely by one vehicle on

one visit. If this is not possible, then the customer is skipped. In contrast, we require customer

demand to be served to the fullest extent possible given available vehicle capacity. Any remaining

customer demand may be served during subsequent visits by the same vehicle, by another vehicle,

or not at all. The problem instances of Hvattum et al. (2006, 2007) consider as many as 151

customers and six vehicles. Our work considers problem instances with as many as 100 customers

and 19 vehicles.
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3 Problem Formulation

The VRPSDL is an extension of the classical vehicle routing problem (see Toth and Vigo (2001)

for a review) and is characterized by a fleet of vehicles operating from a central depot and by

a set of customers with stochastic demand. Let G = (N , E) be a complete graph where N =

{0, 1, . . . , N} is a set of N + 1 nodes and E = {(n, n′) : n, n′ ∈ N} is the set of edges connecting

the nodes. Node 0 represents a depot and nodes 1, . . . , N represent customer locations. Travel

times t(n, n′) associated with each edge (n, n′) in E are known and assumed deterministic. Let

M = {1, . . . ,M} be a set of M identical vehicles initially located at the depot. Let Q denote

vehicle capacity and L a route duration limit (e.g., end of a working day) by which time all vehicles

must return to the depot. Vehicle routes begin and end at the depot. Customer demands are random

variables that follow a known joint probability distribution F with a support restricted to be a

subset of [0,∞)N . Prior to arrival at customer locations, customer demands are known only in

distribution. Upon arrival, customer demands are observed and served to the maximum extent,

subject to available vehicle capacity. When a vehicle’s capacity is exhausted (i.e., a route failure

occurs), the vehicle must return to the depot to restore capacity up to Q. Demand that remains

unserved after an initial vehicle visit may possibly be satisfied on subsequent visits by the same

vehicle, or by another.

The objective of the VRPSDL is to obtain a policy that maximizes expected demand served.

Our choice of objective function is motivated by van de Klundert and Wormer (2010), who empha-

size the need to focus on customer service levels. Further, the VRPSDL objective of maximizing

expected demand served aligns with the goals of many humanitarian and disaster relief logis-

tics problems (Campbell et al., 2008), such as the distribution of vaccines or emergency medical

supplies. Alternative objective functions might also consider the more traditional goal of cost-

minimization by placing appropriate weights on each objective.

We formulate the VRPSDL as a MDP. We present a summary of the MDP model in this section

and refer the reader to Appendix A for a detailed formulation. The state of the system is the tuple

(l, t, q, d, x). For each vehicle, vectors l, t, and q store vehicle destinations, arrival times at vehicle

destinations, and remaining vehicle capacities, respectively. The state of vehiclem inM is denoted

(lm, tm, qm). For each customer, vectors d and x store unserved customer demand and the observed

demand, respectively. The state of demand at customer n in N is denoted (dn, xn). An action is

an assignment of the vehicles inM to locations in N . We place the following restrictions on the

available actions. Vehicles en route may not be diverted. If a vehicle’s capacity will be depleted

by serving customer demand at its current location, then the vehicle must return to the depot to

replenish. We prohibit actions assigning more than one vehicle to a customer, but allow multiple
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vehicles to return to the depot. Actions forcing a vehicle to return to the depot at a time greater

than L are prohibited. Vehicles are not permitted to wait at locations, except at the depot when it

is not feasible to collect demand from the remaining set of customers. We denote the pre-decision

state at decision epoch k by sk, an action in action space A(sk) by a, and the post-decision state

corresponding to action a by sak (see Powell (2007) for a discussion of pre- and post-decision

states).

The system dynamics proceed as follows. A decision epoch is triggered by the arrival of one or

more vehicles at customer locations or at the depot (multiple vehicles may arrive simultaneously).

Upon arrival to customer locations, actual demand is observed. In addition, vehicle capacities are

replenished for vehicles arriving at the depot. These events are captured in the transition from

post-decision state sak−1 to pre-decision state sk. For vehicles at customer locations or at the depot

(i.e., vehicles not en route), an action is selected indicating each respective location these vehicles

will travel to next. Vehicles currently at customer locations then serve demand to the fullest extent

given available vehicle capacity (total demand served in period k is recorded as reward Rk(sk, a))

and the selected action, specifying the next destination for each vehicle, is executed. These events

are captured in the deterministic transition from pre-decision state sk to post-decision state sak.

The example in Figure 1 and Table 1 illustrates states and actions. The example consists of

two vehicles and four customers with Manhattan distances defined by a unit grid. Pre-decision

state sk is noted at the top of Figure 1. In state sk, vehicle 1 is at customer 1 and vehicle 2 is

at customer 4. These vehicles arrived simultaneously at their respective locations at time 2, both

with full capacity of 50 units. Demands at customers 1 and 4 are observed to be 20 and 15 units,

respectively, none of which has been served. Demands at customers 2 and 3 are not yet observed

(indicated by “?”); the table within Figure 1 displays the possible demands at these customers. The

first column of Table 1 displays the feasible action set A(sk). Each of the seven actions is a two-

dimensional vector indicating a feasible assignment of the two vehicles to locations. For example,

action 1 assigns both vehicles to the depot to replenish capacity. The second column of Table 1

displays the post-decision states that result from selecting the actions in the first column. Because

the reward collected depends only on the demands at current vehicle locations and available vehicle

capacities, the reward Rk(sk, a) is 20 + 15 = 35 units of demand for any action a listed in the first

column. The post-decision states in the second column reflect that demand at customers 1 and 4

has been fully served by indicating zero unserved demand at these customers. The third column

of Table 1 displays all possible pre-decision states at decision epoch k + 1. Multiple pre-decision

states are listed when customer demand(s) have not yet been observed at the location(s) to which

vehicle(s) arrive next. We discuss the remainder of Table 1 in the sections that follow.

Let Π be the set of all Markovian deterministic policies for the VRPSDL. A policy π in Π is a
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Figure 1: Example of a Pre-Decision State in a Two-Vehicle, Four-Customer VRPSDL

sequence of decision rules: π = (δπ0 , δ
π
1 , . . . , δ

π
K), where each decision rule δπk (sk) : sk 7→ A(sk) is

a function that specifies the action choice when the process occupies state sk and follows policy π.

We seek a policy π in Π that maximizes the total expected reward, conditional on initial state s0:

E[
∑K

k=0Rk(sk, δ
π(sk))|s0]. Denoting by V (sk) the expected reward-to-go from state sk in epoch

k through final decision epoch K, an optimal policy can be obtained by solving the optimality

equation V (sk) = maxa∈A(sk){Rk(sk, a)+E[V (sk+1)|sk, a]} for each epoch k and state sk in state

space S, where V (sK) = 0 for each absorbing state sK .

4 A Fixed-Route Heuristic

In this section, we present a fixed-route heuristic for the VRPSDL. We use this heuristic in §5 to

develop rollout policies for the VRPSDL. In §4.1, we define a fixed-route policy class. In §4.2, we

discuss a local search procedure for fixed-route policies.

4.1 Fixed-Route Policies

As we discuss in §1, a fixed route specifies a static ordering of customers for a driver to visit.

We denote by V(s) the set of all possible fixed routes when the process occupies a pre- or post-

decision state s. We denote by vm a fixed route for vehicle m in vehicle set M, where vm =

(vm1 , v
m
2 , . . . , v

m
Bm) is a sequence of Bm locations such that vm1 is the destination of vehicle m in

state s and the remaining locations are customers in N \ {0}; if vehicle m is at a location in state

s (versus en route to a destination), then vm1 is this location. A fixed-route policy is characterized

by v = (vm)m∈M, a set containing a fixed route for each vehicle m in M. In v, each customer

with pending or unknown demand appears exactly once on exactly one route. As an example,
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Table 1: Example of System Dynamics in a Two-Vehicle, Four-Customer VRPSDL
Action a Post-Decision State sak Pre-Decision State(s) sk+1 Fixed Routes v Yielding Action a

1:
(
0
0

) (
0
0

)
,

(
4
4

)
,

(
30
35

)
,

0
?
?
0

 ,

20
?
?
15

 (
0
0

)
,

(
4
4

)
,

(
50
50

)
,

0
?
?
0

 ,

20
?
?
15

 none

2:
(
0
2

)†‡ (
0
2

)
,

(
4
5

)
,

(
30
35

)
,

0
?
?
0

 ,

20
?
?
15

 (
0
2

)
,

(
4
5

)
,

(
50
35

)
,

0
?
?
0

 ,

20
?
?
15

 v1 = (1)

v2 = (4, 2, 3)

3:
(
0
3

)†‡ (
0
3

)
,

(
4
3

)
,

(
30
35

)
,

0
?
?
0

 ,

20
?
?
15

 (
0
3

)
,

(
4
3

)
,

(
30
35

)
,

 0
?
15
0

 ,

20
?
15
15

 v1 = (1)

v2 = (4, 3, 2)

(
0
3

)
,

(
4
3

)
,

(
30
35

)
,

 0
?
20
0

 ,

20
?
20
15



4:
(
2
0

)†‡ (
2
0

)
,

(
3
4

)
,

(
30
35

)
,

0
?
?
0

 ,

20
?
?
15

 (
2
0

)
,

(
3
4

)
,

(
30
35

)
,

0
5
?
0

 ,

20
5
?
15

 v1 = (1, 2, 3)

v2 = (4)

(
2
0

)
,

(
3
4

)
,

(
30
35

)
,

 0
10
?
0

 ,

20
10
?
15



5:
(
2
3

)† (
2
3

)
,

(
3
3

)
,

(
30
35

)
,

0
?
?
0

 ,

20
?
?
15

 (
2
3

)
,

(
3
3

)
,

(
30
35

)
,

 0
5
15
0

 ,

20
5
15
15

 v1 = (1, 2)

v2 = (4, 3)

(
2
3

)
,

(
3
3

)
,

(
30
35

)
,

 0
5
20
0

 ,

20
5
20
15


(
2
3

)
,

(
3
3

)
,

(
30
35

)
,

 0
10
15
0

 ,

20
10
15
15


(
2
3

)
,

(
3
3

)
,

(
30
35

)
,

 0
10
20
0

 ,

20
10
20
15



6:
(
3
0

)†‡ (
3
0

)
,

(
5
4

)
,

(
30
35

)
,

0
?
?
0

 ,

20
?
?
15

 (
3
0

)
,

(
5
4

)
,

(
30
50

)
,

0
?
?
0

 ,

20
?
?
15

 v1 = (1, 3, 2)

v2 = (4)

7:
(
3
2

)† (
3
2

)
,

(
5
5

)
,

(
30
35

)
,

0
?
?
0

 ,

20
?
?
15

 (
3
2

)
,

(
5
5

)
,

(
30
35

)
,

 0
5
15
0

 ,

20
5
15
15

 v1 = (1, 3)

v2 = (4, 2)

(
3
2

)
,

(
5
5

)
,

(
30
35

)
,

 0
5
20
0

 ,

20
5
20
15


(
3
2

)
,

(
5
5

)
,

(
30
35

)
,

 0
10
15
0

 ,

20
10
15
15


(
3
2

)
,

(
5
5

)
,

(
30
35

)
,

 0
10
20
0

 ,

20
10
20
15


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consider again Figure 1. A fixed route for vehicle 1 must begin at customer 1, vehicle 1’s current

location. Similarly, a fixed route for vehicle 2 must begin at customer 4. One possible set of fixed

routes is obtained by assigning customers 3 and 2 to vehicle 1, in that order, resulting in v =

(v1, v2) = ((v1
1, v

1
2, v

1
3), (v2

1)) = ((1, 3, 2), (4)). The set V(sk) consists of all possible assignments

of customers 2 and 3 to routes for vehicles 1 and 2.

The decision rules we associate with a fixed-route policy are dictated by the set of fixed routes.

Vehicles are required to visit customers in the order specified by the fixed routes. After a vehicle

m serves demand at a customer vmb , vehicle m continues directly to the next customer on its fixed

route, vmb+1, or to the depot if vmb is the final customer on the fixed route. If continuing on to vmb+1

will result in a violation of the route duration limit, a vehicle is required to return to the depot.

A return trip to the depot for the purpose of capacity replenishment is required in the event of a

route failure and is not permitted otherwise. Although it is possible to consider fixed-route policies

that permit replenishment prior to route failures (e.g., in the spirit of Bertsimas et al. (1995)),

preemptive capacity replenishment policies for the VRPSDL are computationally challenging to

evaluate (Goodson, 2010). In §5, we discuss how we consider preemptive capacity replenishments

via our rollout policies.

To precisely describe a fixed-route decision rule, denote by π(v) = (π(vm))m∈M the fixed-

route policy associated with the set of fixed routes v, which consists of a separate policy for each

vehicle m in M. At decision epoch k, suppose the process occupies state sk = (l, t, q, d, x).

Denote by Tk the time at which decision epoch k occurs and byM′ the set of vehicles that reach

their destinations at time Tk. Let vmb be the first customer on the fixed route for vehicle m that

will have pending or unknown demand after demand at the current location is served to the fullest

extent possible. Customer vmb may be the current location if available capacity is insufficient to

meet demand at the vehicle’s current location. If demand at all customers on the fixed route will

be served during the current period, then let vmb be the depot. Then, the fixed-route decision rule

for vehicle m is

δ
π(vm)
k (sk) =



lm, m 6∈ M′,

0, m ∈M′ and qm ≤ dlm ,

0, m ∈M′ and Tk + t(lm, v
m
b ) + t(vmb , 0) > L,

vmb , otherwise.

(1)

The first case in equation (1) requires a vehicle en route to continue to its destination. The second

case assigns a vehicle to the depot if capacity will be depleted after serving demand at its current

location. The third case assigns a vehicle to the depot if traveling to customer vmb will result in a
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violation of the route duration limit. The fourth case assigns a vehicle to location vmb . The decision

rule for policy π(v) consists of the decision rules for each fixed route composing v: δ
π(v)
k =

(δ
π(vm)
k )m∈M.

We denote by V π(v)(s) the expected value of following policy π(v) onward from a pre- or post-

decision state s, where policy π(v) is obtained by applying the fixed-route heuristic of §4.2. We

denote by V̂ π(v)(s) an unbiased and consistent estimator of V π(v)(s). In Appendix B, we provide a

pseudo-polynomial-time procedure to calculate V π(v)(s) and a Monte Carlo simulation procedure

to calculate V̂ π(v)(s). The local search procedure in §4.2 employs both evaluation methods.

4.2 Fixed-Route Local Search

From a given pre- or post-decision state s, we describe a local search procedure to search V(s), the

space of all fixed routes when the process occupies state s. The local search utilizes a relocation

neighborhood (Kindervater and Savelsbergh, 2003) and a first-improving search criterion.

The relocation neighborhood of a set of fixed routes v consists of all sets of fixed routes that

can be obtained by relocating a customer vmi after another customer vm′j such that i 6= 1. The

condition i 6= 1 ensures that vehicles’ current destinations, given by state s, are fixed for all

solutions in the neighborhood. For example, consider again the pre-decision state sk depicted in

Figure 1 where the current location of vehicle 1 is customer 1 and the current location of vehicle

2 is customer 4. Suppose the current fixed-route policy π(v) is characterized by the set of fixed

routes v = (v1, v2) = ((1, 2, 3), (4)). Then, the relocation neighborhood of v consists of three sets

of fixed routes: ((1, 3, 2), (4)), ((1, 3), (4, 2)), and ((1, 2), (4, 3)).

Each iteration of the local search proceeds as follows. Given a current set of fixed routes v, a

set of fixed routes v̄ is randomly selected from the relocation neighborhood of v. If the estimated

value of policy π(v̄) is greater than the estimated value of policy π(v) (i.e., V̂ π(v̄)(s) > V̂ π(v)(s)),

then the current set of fixed routes is updated to be v̄ and the process repeats. Otherwise, the search

continues by randomly selecting another set of fixed routes from the relocation neighborhood of v.

The procedure terminates and returns fixed-route policy π(v) if there does not exist a set of fixed

routes v̄ in the relocation neighborhood of v such that V̂ π(v̄)(s) > V̂ π(v)(s). After the local search

terminates, we calculate V π(v)(s), the exact value of policy π(v).

We note that our first-improving local search strikes a balance between computational effort

and solution quality. In preliminary experiments, we employed simple greedy construction proce-

dures as well as more sophisticated simulated-annealing based methods. The former executed very

quickly, but delivered poor performance in the rollout policies of §5. The latter performed quite

well, but required significant computation time, thereby making it difficult to carry out the full
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range of computational experiments we present in §6. The first-improving local search we present

in this section yields acceptable fixed-route policies with reasonable computational effort.

5 Rollout Policies for the VRPSDL

We use the fixed-route heuristic of §4, in conjunction with rollout algorithms, to approximate the

reward-to-go at each decision epoch. Rollout algorithms are heuristic versions of policy iteration

for dynamic programs and employ the concept of forward dynamic programming. From a current

state, the reward-to-go is approximated by heuristic policies, which are then used to guide action

selection in the current state. For an in-depth discussion of rollout applied to deterministic dynamic

programs, we refer the reader to Bertsekas et al. (1997) and Bertsekas (2000). Goodson et al.

(2012) describe rollout policies for general stochastic dynamic programs. A general introduction

to approximate dynamic programming is provided by Powell (2007).

In §5.1 and §5.2, we present one-step and post-decision rollout policies for the VRPSDL. In

§5.3, we introduce a hybrid rollout policy for the VRPSDL. In §5.4, we discuss a fortified rollout

procedure that provides a performance guarantee for our rollout policies. In §5.5, we discuss static

and dynamic decomposition methods for the VRPSDL and describe how to implement rollout

policies for both schemes.

5.1 One-Step Rollout

In the literature, rollout policies are typically implemented as an approximate dynamic program-

ming procedure that looks ahead one step, using a heuristic to approximate the reward-to-go (e.g.,

see Secomandi (2003), Bertsimas and Popescu (2003), Bertsimas and Demir (2002), or Guerriero

and Mancini (2003)). From a current state sk and for a given action a, our one-step rollout pol-

icy transitions to all possible states sk+1 that may be observed at the next decision epoch. We

denote these states by the set S(sk, a) = {sk+1 : P{sk+1|sk, a} > 0}. Augmenting our no-

tation in §4, we denote by V π(v,s′)(s) the expected value of following a fixed-route policy π(v)

onward from a pre- or post-decision state s, where policy π(v) is obtained by applying the fixed-

route heuristic of §4.2 in a pre- or post-decision state s′. From each pre-decision state sk+1

in S(sk, a), we execute the fixed-route heuristic to obtain a fixed-route policy π(v) with value

V π(v,sk+1)(sk+1). In a one-step rollout algorithm, the estimate of the reward-to-go when select-

ing action a in state sk is given by the expected value of the fixed-route policies obtained in all

possible states sk+1: E[V π(v,sk+1)(sk+1)|sk, a] =
∑

sk+1∈S(sk,a) V
π(v,sk+1)(sk+1) × P{sk+1|sk, a}.

One-step rollout selects an action a in feasible action set A(sk) that maximizes the value of
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Rk(sk, a) + E[V π(v,sk+1)(sk+1)|sk, a].

For each feasible action a, one-step rollout executes the fixed-route heuristic |S(sk, a)| times,

resulting in a total of
∑

a∈A(sk) |S(sk, a)| executions of the fixed-route heuristic. For example, in

Table 1, the estimated reward-to-go for selecting action 5 is obtained by calculating the expected

value of the four fixed-route policies that result from executing the fixed-route heuristic from each

of the four states listed in the third column. Over all actions in A(sk), one-step rollout executes

the fixed-route heuristic 15 times, once from each state in the third column.

5.2 Post-Decision Rollout

Our computational work in §6 shows that one-step rollout policies yield good results. How-

ever, the computation required to look ahead one full step at each decision epoch is possible

only for problem instances with 50 or fewer customers. We seek to reduce this computational

burden by considering a post-decision rollout policy (see Goodson et al. (2012) for a more in-

depth discussion of post-decision rollout). From a current state sk and for a given action a, our

post-decision rollout policy transitions to the post-decision state sak. From state sak, we execute

the fixed-route heuristic resulting in a fixed-route policy π(v), which is then used to estimate

the reward-to-go. Post-decision rollout selects an action a in A(sk) that maximizes the value

of Rk(sk, a) + E[V π(v,sak)(sk+1)|sk, a].

Post-decision rollout fixes vehicle destinations, capacities, and arrival times at the next decision

epoch, but does not observe future demand as in one-step rollout. Thus, in contrast to one-step

rollout, which executes the fixed-route heuristic
∑

a∈A(sk) |S(sk, a)| times, post-decision rollout

executes the fixed-route heuristic only |A(sk)| times, or once from each post-decision state. This

contrast is highlighted in Table 1. Whereas one-step rollout executes the fixed-route heuristic from

each of the 15 states in the third column, post-decision rollout executes the fixed-route heuristic

only seven times, once from each post-decision state listed in the second column. Noting that the

worst-case number of feasible actions is O(MN), the worst-case number of fixed-route executions

per epoch is O(MN |S|) in one-step rollout and O(MN) in post-decision rollout. Although the

worst-case complexity of both procedures is exponential, the complexity of one-step rollout de-

pends on the size of the state space, which can be quite large (see the detailed problem formulation

in Appendix A).

Our computational experiments suggest that post-decision rollout is an attractive alternative to

one-step rollout. Although post-decision rollout reduces computation relative to one-step rollout,

the computational requirement of post-decision rollout can still be demanding, particularly when

decision epochs occur as a result of the simultaneous arrival of vehicles to locations. In these
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situations, the number of feasible actions grows combinatorially with the number of vehicles ar-

riving simultaneously and with the number of customers. For example, the number of feasible

actions at a decision epoch may range from several hundred to several million. In the latter case,

it is not difficult to execute a “simple” heuristic with short run times (e.g., a greedy construction

procedure) from the post-decision states corresponding to each feasible action. However, as we

discuss in §4.2, our experience with the VRPSDL indicates that overly-simplified heuristics per-

form poorly because they frequently return low-quality fixed-route policies. Although our local

search procedure for fixed-route policies yields higher-quality policies, it requires more time to

execute. Consequently, executing this heuristic once for each action in a large action space is

computationally prohibitive.

5.3 Hybrid Rollout

We introduce hybrid rollout to circumvent the computational issues encountered in post-decision

rollout. Hybrid rollout limits the number of post-decision states from which the fixed-route heuris-

tic is executed. We refer to our method as hybrid because it executes the fixed-route heuristic from

the pre-decision state and from select post-decision states. The basic premise of hybrid rollout

is that a single execution of the fixed-route heuristic from the current pre-decision state sk (in the

spirit of a rolling horizon procedure) can be used to implicitly evaluate a subset of the action space,

Ā(sk) ⊆ A(sk). Then, specific actions are identified and evaluated via the fixed-route heuristic

from their respective post-decision states. This is in contrast to one-step and post-decision roll-

out, which explicitly evaluate each feasible action by executing the fixed-route heuristic from the

resulting pre- or post-decision states, respectively.

Algorithm 1 details the logic used by hybrid rollout to select an action at decision epoch k.

Line 1 defines the set Ā(sk) = {δπ(v)
k (sk) : v ∈ V(sk)} as the set of actions obtainable from the

application of the fixed-route decision rule in equation (1) to each set of fixed routes v in V(sk), the

space of all fixed routes in the current pre-decision state. To identify the “best” action in Ā(sk),

line 2 executes the fixed-route heuristic from the current pre-decision state sk. Line 3 uses the

resulting policy, π(v̄), to extract action āk = δ
π(v̄)
k (sk) via the fixed-route decision rule in equation

(1). Action āk is one of a set of select actions to be evaluated from the post-decision state in

subsequent steps of Algorithm 1.

Table 1 illustrates the construction of Ā(sk). The fourth column of Table 1 lists the fixed routes

composing V(sk) (note that in larger problem instances, there may be many fixed-route policies

that yield the same action). The actions that result from applying the decision rule in equation (1) to

each fixed route are displayed in the first column. For example, action 5 is obtained by applying the
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Algorithm 1 Hybrid Rollout

1: Ā(sk)← {δπ(v)
k (sk) : v ∈ V(sk)}

2: Execute fixed-route heuristic from pre-decision state sk yielding fixed-route policy π(v̄)

3: āk ← δ
π(v̄)
k (sk)

4: Â(sk)← {a ∈ Ā(sk) : ∃ m ∈M′ such that am = 0 and qm > dlm}
5: λ← −∞
6: for a ∈ {A(sk) \ Ā(sk)} ∪ Â(sk) ∪ āk do
7: Execute fixed-route heuristic from post-decision state sak yielding fixed-route policy π(v)

8: η ← Rk(sk, a) + E[V π(v,sak)(sk+1)|sk, a]

9: if η > λ then
10: λ← η

11: a? ← a

12: Select action a?

decision rule in equation (1) to each fixed route in the set of fixed routes ((1, 2), (4, 3)), resulting

in an assignment of vehicle 1 to customer 2 and vehicle 2 to customer 3. Actions 2-7 in Table 1,

superscripted by †, compose the set Ā(sk).

While the single execution of the fixed-route heuristic from the pre-decision state sk may be

effective at implicitly evaluating the large number of actions in Ā(sk), it may suffer from two

shortcomings. First, it may not consider some actions, i.e., {A(sk)\Ā(sk)} 6= ∅ if there are actions

that cannot be represented by a set of fixed routes in the pre-decision state. In Table 1, action 1,

which preemptively replenishes the capacity of both vehicles, composes {A(sk) \ Ā(sk)}.
Second, the single execution of the fixed-route heuristic from the pre-decision state sk may

inaccurately evaluate a subset of actions Â(sk) ⊆ Ā(sk). Line 4 of Algorithm 1 defines Â(sk) =

{a ∈ Ā(sk) : ∃ m ∈ M′ such that am = 0 and qm > dlm} as the set of preemptive capacity

replenishment actions belonging to Ā(sk); as defined in §4.1,M′ is the set of vehicles that have

arrived at a customer location at decision epoch k. In Table 1, Â(sk) consists of actions 2, 3, 4,

and 6, each superscripted by ‡. The evaluation of these preemptive capacity replenishment actions

by the fixed-route heuristic from the pre-decision state is often inaccurate. For example, consider

action 2 in Table 1, which assigns vehicle 2 to customer 2 and preemptively replenishes vehicle 1’s

capacity by assigning vehicle 1 to the depot. The fourth column of Table 1 indicates that action 2

corresponds to the set of fixed routes ((1), (4, 2, 3)). Thus, a fixed-route heuristic evaluating action

2 from the pre-decision state does so by assuming that vehicle 1 will serve demand at its current

location (customer 1), then return permanently to the depot, and that all other customers will be

visited by vehicle 2. This is potentially problematic because assuming that vehicle 1 is unable to
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serve additional demand is often inaccurate, particularly near the beginning of the time horizon.

Using local variables λ and η, lines 5-11 execute post-decision rollout over the actions excluded

or potentially misevaluated by the previous application of the fixed-route heuristic from the pre-

decision state. In addition, āk is also evaluated from the post-decision state to facilitate a fair

comparison. Line 12 concludes Algorithm 1 by identify the action to select at decision epoch k.

To summarize the example in Table 1, executing the fixed-route heuristic from pre-decision

state sk returns action āk = 2, 3, 4, 5, 6, or 7. Action 1 composes the set A(sk) \ Ā(sk) and

preemptive capacity replenishment actions 2, 3, 4, and 6 belong to Â(sk). In the worst case,

if āk is action 5 or 7, then the fixed-route heuristic is executed from the pre-decision state and

from six post-decision states, a total of seven executions. In this small example, the number of

fixed-route heuristic executions may be the same for post-decision and hybrid rollout, i.e., the

worst-case complexities are equivalent. However, depending on the sizes of the setsA(sk), Ā(sk),

and Â(sk), a hybrid rollout policy may execute the fixed-route heuristic many fewer times than the

number of executions required by a post-decision rollout policy. Our experience with the VRPSDL

indicates that this difference grows combinatorially with the number of customers and the number

of vehicles.

5.4 Fortified Rollout

Our one-step, post-decision, and hybrid rollout procedures for the VRPSDL are each implemented

in a fashion that guarantees their performance is at least as good as the performance of the bench-

mark static fixed routes described in §6.2. We accomplish this by using the benchmark policy to

select an action at the first decision epoch, then at each subsequent decision epoch we compare the

value of the in-hand fixed-route policy against the value of the policy returned by the fixed-route

heuristic and use the policy with the larger value to select an action. In the rollout literature, the

performance guarantee we achieve is known as the rollout improvement property and the proce-

dure is commonly referred to as a fortified rollout algorithm. Bertsekas et al. (1997) introduce the

rollout improvement property and the concept of a fortified algorithm for deterministic dynamic

programs. The results we apply in this work are due to Goodson et al. (2012), which extends

the work of Bertsekas et al. (1997) to general stochastic dynamic programs. We apply the same

techniques in the decomposition schemes of §5.5.
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5.5 Decomposition-Based Rollout Policies

The computational experiments of §6 find that, relative to one-step and post-decision rollout, hy-

brid rollout increases the problem sizes we are able to consider up to 75-customer problems. Be-

yond this, hybrid rollout faces the same obstacle that prevents post-decision rollout from scaling to

larger problem instances: the number of post-decision states from which the fixed-route heuristic

is executed becomes prohibitive. The static and dynamic decomposition schemes we explore in

this section seek to reduce the required computation by applying rollout policies to single-vehicle

problems and using the resulting policies to select actions for a multi-vehicle fleet. The effect

of both decomposition schemes is to restrict the action space over which one-step, post-decision,

and hybrid rollout are applied. The restriction is achieved by disallowing actions that assign ve-

hicles to customers outside of the single-vehicle problems. The decomposition schemes lead to

computational tractability for larger VRPSDL problem instances.

As discussed in §2, the static decomposition method of Fan et al. (2006) is achieved by parti-

tioning customers into permanent groups at the beginning of the time horizon, i.e., at initial state

s0. At a given decision epoch, the feasible action space for a vehicle is restricted by the customers

in its partition. Referring to the two-vehicle example problem in Figure 1, one possible partitioning

assigns customers 1 and 2 to vehicle 1 and customers 3 and 4 to vehicle 2. Then, from the state sk
given in Figure 1, the feasible action set for vehicle 1 consists of an assignment to customer 2 or

to the depot. Similarly, the feasible action set for vehicle 2 consists of an assignment to customer

3 or to the depot. In their work, Fan et al. (2006) partition customers geographically in a radial

fashion. Our computational experience suggests that performance can be improved by partitioning

customers via a high-quality set of fixed routes. We obtain this set of fixed routes via a simulated

annealing heuristic executed from initial state s0 (see Appendix C for details).

The static decomposition method of Fan et al. (2006) leads to two computational advantages.

The first advantage is a reduction in the number of feasible actions – all actions assigning a vehicle

to a customer outside of its partition are ignored. This in turn reduces the number of times the fixed-

route heuristic must be executed in one-step, post-decision, and hybrid rollout policies. The worst-

case complexities of the rollout algorithms reflect this reduction. In the worst-case, the number of

fixed-route heuristic executions per epoch isO(MN |S|) for one-step rollout andO(MN) for post-

decision and hybrid rollout. The second advantage is a reduction in the size of the neighborhood

used in the fixed-route local search. Because attention is restricted to single-vehicle routes within

a particular partition, the number of fixed routes in the neighborhood of a current solution is much

smaller than in the multi-vehicle case.

Although the static decomposition method of Fan et al. (2006) is computationally attractive,
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our computational experience suggests that rollout policies achieve better results without decom-

position. While disallowing customers to be shared across vehicles significantly decreases the

size of the action space, it also prohibits the selection of actions that lead to increases in expected

demand served.

In an effort to overcome this limitation, we propose a dynamic decomposition scheme that aims

to retain the computational advantage of static decomposition while improving its performance. In

dynamic decomposition, customers are re-partitioned at each decision epoch. At decision epoch k

when the process occupies state sk, we re-partition customers by executing the fixed-route heuristic

of §4.2 from the current pre-decision state sk. The fixed routes returned by the heuristic define the

partitions for decision epoch k. Due to its time-consuming nature, we employ the fixed-route

simulated annealing heuristic (see Appendix C) only to determine the initial partitions. As with

static decomposition, one-step, post-decision, and hybrid rollout can be applied to each partition to

obtain a decision rule for the corresponding vehicle. At the next decision epoch, we again execute

the fixed-route heuristic to obtain a potentially different partitioning.

Like static decomposition, dynamic decomposition limits the number of feasible actions by

only allowing a vehicle to be routed to customers in its partition. However, because dynamic

decomposition permits changes in the customer partitions, customers assigned to a certain partition

at one decision epoch may not necessarily by assigned to the same partition at a future decision

epoch. Our computational experiments indicate that dynamically adjusting the decomposition in

this fashion yields much better results than static decomposition.

6 Computational Results

In this section, we report on computational experiments that implement the VRPSDL rollout poli-

cies described in §5. In §6.1, we detail the generation of problem instances used in our experiments.

In §6.2, we describe upper bounds and benchmarks for our rollout policies. A discussion of our

computational results is provided in §6.3.

We implement our procedures in C++ and execute all computational experiments on 2.8GHz

Intel Xeon processors with 12-48GB of RAM and the CentOS 5.3 operating system (we do not

utilize parallel processing). The total computing time required to carry out the experiments is 6.2

CPU years, which breaks down as follows: 76 percent of the computing time is due to experiments

with no decomposition, 2 percent is due to experiments with static decomposition, and 22 percent

is due to experiments with dynamic decomposition.
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Table 2: Problem Parameters
Duration Limits Capacities

Problem Vehicles (short, medium, long) (small, medium, large)

R101 (25) 4 (85.575, 142.625, 199.675) (25, 50, 75)

C101 (25) 5 (67.875, 113.125, 158.375) (25, 50, 75)

R101 (50) 8 (89.475, 149.125, 208.775) (25, 50, 75)

C101 (50) 9 (67.875, 113.125, 158.375) (25, 50, 75)

R101 (75) 11 (103.05, 171.75, 240.45) (25, 50, 75)

C101 (75) 14 (99.45, 165.75, 232.05) (25, 50, 75)

R101 (100) 15 (94.875, 158.125, 221.375) (25, 50, 75)

C101 (100) 19 (95.325, 158.875, 222.425) (25, 50, 75)

6.1 Problem Instances

To facilitate our experiments, we modify eight problems derived from the instances of Solomon

(1987), ignoring the time windows, with the aim of considering a broad range of problem types.

The problems include R101 (randomly dispersed customers) and C101 (clustered customers), each

with 25, 50, 75, and 100 customers. We vary vehicle capacity, impose route duration limits,

and vary customer demand variability to yield a total of 216 problem instances. We set problem

parameters as follows. For each of the eight Solomon instances, we consider vehicle capacities of

25, 50, and 75 units, hereafter referred to as small, medium, and large. To determine fleet size and

route duration limits, we first solve each of the eight Solomon instances as a classical VRP (i.e.,

time windows are ignored) with a vehicle capacity of 100. We employ the heuristic of Goodson

et al. (2012) for this purpose. The fleet size M for each problem instance is set to the number of

routes in the VRP solution. We then multiply the length of the longest route in each solution by

0.75, 1.25, and 1.75. The resulting route duration limits are hereafter referred to as short, medium,

and long. Fleet size, route duration limits, and capacities are displayed in Table 2.

We assume customer demands are independent random variables, and we construct discrete,

symmetric probability distributions for customer demand with low, moderate, and high variability.

The expected demand for each customer is set to the deterministic demand given in the original

Solomon instances; denote this quantity by x̄. To construct a high variability probability distribu-

tion for a given customer, we assign uniform probabilities of 0.20 to {0, x̄/2, x̄, 3x̄/2, 2x̄}. To con-

struct a moderate variability probability distribution for a given customer, we assign probabilities

of {0.05, 0.15, 0.60, 0.15, 0.05} to {0, x̄/2, x̄, 3x̄/2, 2x̄}. To construct a low variability probability

distribution for a given customer, we assign probabilities of {0.05, 0.9, 0.05} to {x̄/2, x̄, 3x̄/2}.
For each of the 216 problem instances, we randomly generate 500 realizations according to the

specified probability distributions for customer demand (a total of 108,000 realizations).

A common measure of the difficulty of a problem instance is the filling rate, defined as total
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expected demand divided by total vehicle capacity (e.g., see Laporte et al. (2002)). The filling

rates for our problem instances range from 0.85 to 3.92. In the stochastic VRP literature, problem

instances with a filling rate greater than 1.0 are considered to be difficult to solve (Laporte et al.,

2002). As the inclusion of a route duration limit adds a dimension not captured by the filling

rate, we report these values mainly as a method to connect our problem instances to other problem

instances treated in the literature. As we show in our computational experiments, our rollout

policies perform close to an upper bound for “difficult” problem instances with a high filling rate

provided that the duration limit is long.

6.2 Bounds and Benchmarks

As an upper bound on the value of an optimal policy, we sum the expected demand at all customers.

We label this bound “Expected Demand.” This is a valid upper bound for any policy because it is

impossible to serve more demand than the total available demand. For several problem instances

with short duration limits, it is impossible to reach some customers within the route duration limit

(i.e., via a singleton route from the depot, to the customer, and back to the depot). When calculating

the upper bound for these problem instances, we do not include the expected demand of impossible-

to-reach customers. For problems with longer duration limits and larger vehicle capacities, we

observe the upper bound to be tight. However, as the duration limit decreases and vehicle capacities

become smaller, we observe that the upper bound becomes weaker.

We consider two benchmarks for our rollout policies. First, we use the value of high-quality

fixed-route policies within the class of policies described in §4.1. We label this benchmark “Static

Fixed Routes.” Because fixed-route policies are commonly implemented in industry, our bench-

mark policies serve as a practice-based standard for our rollout policies. In Appendix C, we de-

scribe the simulated annealing procedure we employ to obtain the benchmark fixed-route policies.

Our experience suggests that the simulated annealing procedure yields high-quality fixed-route

policies for the problem instances we consider.

The second benchmark we employ is a rolling horizon procedure. At each decision epoch,

the rolling horizon procedure executes the fixed-route heuristic from the current, pre-decision

state. An action is selected by following the resulting fixed-route policy. We label this benchmark

“Rolling Horizon.” We also implement the rolling horizon procedure within the static decomposi-

tion scheme of §5.5. In this case, the rolling horizon procedure executes the fixed-route heuristic

separately for each partition of customers. We label this benchmark “Rolling Horizon (D).” Al-

though rolling horizon methods are well-known in the literature, the implementation via our local

search-based fixed-route heuristic appears to be unique in the vehicle routing literature. The only
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similar method of which we are aware is due to Novoa and Storer (2008), who consider recom-

puting fixed-route policies at each decision epoch via a greedy construction heuristic. Further, our

local search scheme is an improvement over Fan et al. (2006), who use a simple cyclic heuristic in

their static decomposition.

6.3 Results and Discussion

Table 3 provides aggregate results of our computational experiments on the problem instances de-

scribed in §6.1. For each method listed in the first column, Table 3 displays the average demand

served and the average number of CPU seconds required to select an action at each decision epoch.

These results are aggregated over all problem parameters for 25-, 50-, 75-, and 100-customer prob-

lem instances. Thus, each entry in Table 3 represents results for 54 of the 216 problem instances.

Aggregating results in this fashion provides a concise overview of our computational experiments.

In Appendix D, we provide disaggregated results for each method.

The first portion of Table 3 displays the benchmarks and bounds described in §6.2. The remain-

ing portions of Table 3 display results for our rollout policies without decomposition, with static

decomposition, and with dynamic decomposition. The average demand served values reported for

“Static Fixed Routes” are averages of the expected demand served (calculated using Algorithm 2

in Appendix B) across 54 problem instances. The average demand served values reported for “Ex-

pected Demand” are the average of the expected demands across 54 problem instances. Average

demand served values for the remaining methods are averages of estimates of the expected demand

served for each of 500 realizations in each of 54 problem instances.

Tables 4, 5, and 6 compare the performance of one-step, post-decision, and hybrid rollout, with

dynamic decomposition and without decomposition, to methods from the literature. Specifically,

Table 4 compares our rollout policies to “Static Fixed Routes,” Table 5 to “Rolling Horizon,” and

Table 6 to one-step rollout with static decomposition. Each entry in these tables is the percent

improvement over the corresponding method from the literature. As in Table 3, the values in

Tables 4, 5, and 6 are aggregated over all problem parameters for 25-, 50-, 75-, and 100-customer

problems.

The best performance relative to methods in the literature is achieved by one-step and post-

decision rollout policies without decomposition. On average, these two methods improve upon

the performance of static fixed routes by 3.26 percent, rolling horizon without decomposition by

0.83 percent, and one-step rollout with static decomposition by 2.05 percent. However, as prob-

lem size increases beyond 50 customers, executing one-step and post-decision rollout becomes

computationally prohibitive given our computing resources. For example, applying one-step roll-
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Table 4: Percent Improvement Over Static Fixed Routes
Method 25 Customers 50 Customers 75 Customers 100 Customers Average

No Decomposition
One-Step Rollout 3.57 3.03 – – 3.30

Post-Decision Rollout 3.43 3.01 – – 3.22

Hybrid Rollout 2.99 2.33 2.06 – 2.46

Dynamic Decomposition
One-Step Rollout 3.05 2.36 2.11 2.45 2.49

Post-Decision Rollout 3.06 2.34 2.11 2.44 2.49

Hybrid Rollout 3.00 2.28 2.08 2.42 2.44

Table 5: Percent Improvement Over Rolling Horizon
Method 25 Customers 50 Customers 75 Customers 100 Customers Average

No Decomposition
One-Step Rollout 0.91 0.83 – – 0.87

Post-Decision Rollout 0.78 0.81 – – 0.79

Hybrid Rollout 0.35 0.15 0.05 – 0.18

Dynamic Decomposition
One-Step Rollout 0.40 0.17 0.10 0.11 0.20

Post-Decision Rollout 0.42 0.15 0.10 0.11 0.19

Hybrid Rollout 0.36 0.10 0.07 0.08 0.15

Table 6: Percent Improvement Over One-Step Rollout with Static Decomposition
Method 25 Customers 50 Customers 75 Customers 100 Customers Average

No Decomposition
One-Step Rollout 2.07 2.09 – – 2.08

Post-Decision Rollout 1.94 2.08 – – 2.01

Hybrid Rollout 1.55 1.46 1.46 – 1.49

Dynamic Decomposition
One-Step Rollout 1.56 1.42 1.47 1.63 1.52

Post-Decision Rollout 1.57 1.42 1.49 1.64 1.53

Hybrid Rollout 1.56 1.41 1.48 1.65 1.52
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out to some realizations of 50-customer problem instances required as much as 16 CPU hours to

complete. Although such computing times may be acceptable for individual problem instances

(i.e., many per epoch CPU times may be reasonable), given our current computing resources, it is

difficult to carry out the full range of experiments required to evaluate one-step and post-decision

rollout on problem instances with more than 50 customers.

Although hybrid rollout without decomposition does not perform as well as one-step and post-

decision rollout, it is a computationally attractive alternative for 75-customer problem instances.

On average, hybrid rollout without decomposition improves upon the performance of static fixed

routes by 2.46 percent, rolling horizon without decomposition by 0.18 percent, and one-step rollout

with static decomposition by 1.49 percent. Despite these improvements over benchmark methods,

for 100-customer problem instances, hybrid rollout without decomposition faces the same compu-

tational obstacles encountered by one-step and post-decision rollout without decomposition.

Rollout policies combined with dynamic decomposition strike a balance between computa-

tional effort and solution quality. On average, rollout policies with dynamic decomposition im-

prove upon the performance of static fixed routes by 2.47 percent, rolling horizon by 0.18 percent,

and one-step rollout with static decomposition by 1.52 percent. These results suggest the perfor-

mance of rollout policies combined with dynamic decomposition is comparable to hybrid rollout

without decomposition. Moreover, on our hardware, per epoch CPU times are almost always less

than five seconds for 100-customer problem instances. This suggests that rollout policies with

dynamic decomposition are strong candidates for making real-time dynamic routing decisions in

large-scale operations.

As can be seen in the disaggregated results in Appendix D, there are circumstances in which

rollout performance is significantly greater than in the aggregated averages reported above. For

example, when the duration limit is short and vehicle capacity is small, the average performance

of one-step rollout without decomposition improves upon the average performance of static fixed

routes by 10.08 percent, rolling horizon by 3.88 percent, and one-step rollout with static decom-

position by 6.64 percent. For the same problem instances, the average performance of one-step

rollout with dynamic decomposition improves upon the average performance of static fixed routes

by 6.94 percent, rolling horizon by 1.09 percent, and one-step rollout with static decomposition by

4.27 percent.
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7 Conclusion

We develop fixed-route based rollout policies to make dynamic routing decisions in the vehicle

routing problem with stochastic demand and duration limits (VRPSDL). Our rollout policies per-

form favorably in comparison to practice-based fixed-route policies and a rolling horizon proce-

dure. To counter the computational demands of larger problem instances, we execute our rollout

policies using a dynamic decomposition scheme. Our computational results indicate that rollout

combined with dynamic decomposition is able to achieve high quality solutions for large problem

instances with reasonable run times, thereby suggesting that dynamic decomposition is a strong

candidate for making real-time decisions in large-scale operations.

We suggest several avenues for future research. First, although we achieve good results with

a local search-based fixed-route heuristic, further improvement may be obtained by consider-

ing a more intricate search procedure. For example, preliminary experience with a simulated

annealing-based fixed route heuristic indicates that significant improvements can be realized on

certain problem instances. However, due to the increased computation required to execute a simu-

lated annealing-based fixed-route heuristic, our current computing resources prohibit an extensive

test of this method. Efforts to speed the convergence of complex search procedures to high-quality

policies would facilitate more exhaustive tests.

Second, consideration of less restrictive fixed-route policies may lead to improved results. Cur-

rently, we utilize the fixed-route policy class described in §4.1. Other potential policy classes in-

clude the paired-vehicle strategy of Ak and Erera (2007) and the recourse strategy of Novoa et al.

(2006), both of which consider a wider range of recourse actions than the policy class in §4.1. How-

ever, policy classes with more complex recourse actions may lead to increased computing times,

possibly limiting the ability to implement such methods in real time for large problem instances.

Third, the upper bound of expected demand is weak in many problem instances. Ideally, we

would bound the objective with the value of an optimal policy. However, a primary motivation

for the development of our rollout policies is the difficulty of obtaining optimal VRPSDL policies.

To emphasize this, consider the work of Secomandi and Margot (2009), which addresses a single-

vehicle VRP with stochastic demand. Provably optimal split-delivery policies are obtained only

for problems with 15 or fewer customers. Moreover, the authors are only able to obtain perfect-

information bounds on the value of optimal split-delivery policies for problem instances with 15 or

fewer customers (although pseudo-bounds are computed for larger problem instances by obtaining

valid bounds on unsplit-delivery policies). Due to the additional complexity introduced by mul-

tiple vehicles, obtaining optimal VRPSDL policies, or non-trivial bounds on the value of optimal

VRPSDL policies, is a subject of future research. One option is to investigate a dual bound based

25



on an information relaxation (Brown et al., 2010). Yet, even a perfect-information relaxation is

problematic to obtain. Despite the absence of uncertainty, a perfect-information relaxation of the

VRPSDL remains a difficult combinatorial problem. Another alternative, motivated by Bertsimas

et al. (1995), is to study the value of heuristic policies under a perfect information relaxation (e.g.,

execute rollout algorithms with known customer demands). Although such policies would not

yield valid bounds, they may provide insight on the value of having more information.
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A Detailed Problem Formulation

In this appendix, we provide the details of the problem description given in §3. The state of the sys-

tem captures all relevant information to make routing decisions and includes vehicle destinations,

arrival times at vehicle destinations, remaining vehicle capacities, unserved customer demand, and

the observed demand. We represent attributes of vehicle m inM by the tuple (lm, tm, qm), where

lm in N is the destination of vehicle m (or its current location if the vehicle has arrived), tm in

[0, L] is the time at which vehicle m will arrive at lm, and qm in [0, Q] is the available capacity of

vehicle m. Let (l, t, q) = (lm, tm, qm)m∈M denote the vector of vehicle attributes.

We characterize demand at customer n in N \ {0} by the pair (dn, xn), where dn in {{?} ∪
[0,∞)} is the unserved (pending) demand at customer n and xn in {{?} ∪ [0,∞)} is the observed

demand at customer n. We include xn in the state because demand not yet observed at unvisited

customers may be dependent upon observed demands. Note that (dn, xn) = (?, ?) indicates the

demand at customer n is currently unknown. Furthermore, dn = ? if xn = ? and the demand

served at customer n is xn − dn. Let (d, x) = (dn, xn)n∈N denote the vector of unserved and

observed demand.

At decision epoch k, a state sk in state space S = NM× [0, L]M× [0, Q]M×{{?}∪ [0,∞)}N×
{{?} ∪ [0,∞)}N takes the form ((l, t, q), (d, x)). The initial state is s0 = ((0, 0, Q)M , (?, ?)N).

States included in the set of absorbing states SK must meet several conditions. First, vehicle

locations must be the depot. Second, we require all vehicles to return to the depot by the duration

limit. Third, travel to customers with pending or unknown demand must be infeasible. The set

of absorbing states is SK = {((0, t, Q)M , (d, x)) : tm ≤ L, tm = tm′ ∀ m,m′ ∈ M, if dn =

? or dn > 0 then TK + t(0, n) + t(n, 0) > L, dn = ? if xn = ?, dn ≤ xn if xn 6= ?}.
An action, taken at each decision epoch, is an assignment of the vehicles in M to locations

in N . Given pre-decision state sk, which contains the vector of arrival times (tm)m∈M, decision

epoch k occurs at time Tk = minm∈M tm. Let M′ = arg minm∈M tm be the set of vehicles

at decision epoch k currently at a customer location or at the depot (i.e., they are no longer en

route). A vehicle inM′ may be assigned to the depot to replenish capacity or may be assigned to a

customer whose demand is either unknown or will be pending after customer demands are served

in the current period. Vehicles in {M \M′} remain en route to their destinations, i.e., we do not

consider diverting them.

Action a is an M -dimensional vector where the mth element, am, is the action directing vehicle

m inM. The set of actions available in state sk is
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A(sk) =
{
a ∈ NM :

am = lm ∀m ∈ {M \M′}, (2)

am = 0∀ {m ∈M′ : qm ≤ dlm , lm 6= 0}, (3)

am 6= am′ ∀ {m,m′ ∈M : m 6= m′, am 6= 0, am′ 6= 0}, (4)

am 6∈ {n ∈ {∪m′∈M′lm′ \ {0}} : dn ≤ qveh(n)}, (5)

am 6∈ {n ∈ {N \ {0}} : dn = 0}, (6)

am 6∈ {n ∈ N : Tk + t(lm, n) + t(n, 0) > L}, (7)

am 6= lm ∀ {m ∈M′ : lm 6= 0}, (8)

|{m ∈M′ : lm = 0, am = 0}| = max{|M̄| − |N̄ |, 0}
}
. (9)

Condition (2) requires that vehicles en route continue to their current destination. Condition (3)

requires vehicles in M′ to return to the depot if capacity will be depleted by serving customer

demands at current locations. Condition (4) prevents assignment of multiple vehicles to customer

locations, except in the case of assignments to the depot. Condition (5) disallows the assignment of

vehicles to locations that will have zero demand after customer demands are served in the current

period (veh(n) denotes the vehicle at location n, i.e., the vehicle m such that lm = n). Similarly,

condition (6) disallows the assignment of vehicles to locations where demand has already been

fully served. Condition (7) prohibits the assignment of vehicles to locations that will result in

violations of the route duration limit. For vehicles inM′ not at the depot, condition (8) disallows

assignment to the current location, i.e., these vehicles are not permitted to wait. In condition (9),

the set {m ∈M′ : lm = 0, am = 0} is the set of vehicles inM′ assigned by action a to wait at the

depot. The set M̄ = {m ∈ M′ : lm = 0 ∨ (lm 6= 0 ∧ am 6= 0)} is the set of vehicles inM′ that

are either at the depot or are not at the depot and are not assigned to the depot by action a. The set

N̄ = {n ∈ N \ {{∪m∈M\M′lm} ∪ {0}} : Tk + t(0, n) + t(n, 0) ≤ L ∧ [((dn = ?∨ dn > 0)∧ n 6∈
{∪m∈M′lm}) ∨ (dn > qveh(n) ∧ n ∈ {∪m∈M′lm})]} is the set of customers not assigned to en route

vehicles, that can be visited by a vehicle currently at the depot without violating the duration limit,

and that will have pending demand after demand is served in the current period. Condition (9) only

allows waiting at the depot if vehicles are unable to feasibly collect demand from the remaining

set of customers, a situation that typically occurs toward the end of the time horizon when serving

additional customer demand may not be possible.

Given that the state is currently sk and that action a in A(sk) is selected, a deterministic tran-

sition is made to post-decision state sak = ((la, ta, qa), (da, xa)) by updating vehicle destinations,

vehicle arrival times, remaining vehicle capacities, and served demand. Vehicle destinations in
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state sak are lam = am for all m inM. To accommodate vehicles waiting at the depot (see condi-

tion (9)), arrival times are calculated in two stages. First, for vehicles not assigned to wait at their

current location, we set

tam =

tm + t(lm, l
a
m), ∀m ∈ {m′ ∈M′ : lm′ 6= lam′},

tm, ∀m ∈ {M \M′}.
(10)

Second, for all m in {m′ ∈ M′ : lm′ = lam′}, we set arrival times to the minimum of the arrival

times calculated in the first stage:

tam = min
m′∈{{M\M′}∪

{m′′∈M′:lm′′ 6=lam′′}}

tam′ . (11)

Thus, vehicles assigned by action a to wait at the depot will “arrive” at the depot at the next decision

epoch. We update remaining vehicle capacities to reflect the demand served at each location visited

at the current epoch:

qam =

max{qm − dlm , 0}, ∀m ∈ {m′ ∈M′ : lm′ 6= 0},

qm, otherwise.
(12)

In addition, we update unserved customer demands:

dan =

max{dn − qveh(n), 0}, ∀n ∈ {∪m∈M′lm \ {0}},

dn, otherwise.
(13)

Observed demands remain unchanged, thus xa = x.

A transition from pre-decision state sk to post-decision state sak results in a reward Rk(sk, a) =∑
m∈MRk,m(sk, a) equal to the served demand, where

Rk,m(sk, a) =

min{dlm , qm}, ∀m ∈ {m′ ∈M′ : lm′ 6= 0},

0, otherwise.
(14)

To be consistent with standard MDP notation, we notate the reward as a function of pre-decision

state sk and selected action a. Note, however, that the VRPSDL reward function depends only on

demand served at current vehicle locations and available vehicle capacity, which are both known

in sk. Therefore, the VRPSDL reward function is independent of action a, which specifies vehicle

destinations at the next epoch.

At decision epoch k + 1, a transition is made from post-decision state sak to pre-decision state

sk+1 = ((l, t, q), (d, x)) by observing customer demand and replenishing the capacity of vehicles
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at the depot. The joint distribution function F governs state transitions conditional on observed

demand x. In this transition, vehicle destinations and arrival times remain unchanged, thus l = la

and t = ta. We update capacities by

qm =

Q, ∀m ∈ {m′ ∈M′ : lm′ = 0},

qam, otherwise.
(15)

Let N ′ = {lam : m ∈ M′, lam 6= 0, xalm = ?} be the set of customers with unknown demand at

which a vehicle has arrived at the current decision epoch. If x̂ is the observed demand at decision

epoch k + 1, then set

xn =

x̂n, n ∈ N ′,

xan, otherwise,
(16)

and

dn =

x̂n, n ∈ N ′,

dan, otherwise.
(17)

B Evaluation of Fixed-Route Policies

For notational convenience, when evaluating a fixed-route policy π(v) from state s onward, we

assume the first customer on each fixed route in v is given by the vehicles’ locations/destinations

in state s. Any set of fixed routes can easily be modified to satisfy this condition. For example,

suppose the fixed route for vehiclem is vm = (vm1 , v
m
2 , . . . , v

m
b , . . . , v

m
Bm) and that in state s vehicle

m is en route to customer vmb . The methods discussed in this section evaluate the fixed-route policy

beginning at customer vmb , i.e., they address the expected demand served by the fixed-route policy

characterized by route (vmb , v
m
b+1, . . . , v

m
Bm).

B.1 Exact Evaluation

Evaluating a fixed-route policy π(v) is accomplished by calculating the expected demand served

at each customer on each fixed route in v. In accordance with the literature on fixed-route policies,

we assume customer demands are independent. This assumption results in separability by route

when calculating the value of a policy.

Below, we develop a method to calculate the expected demand served at a single customer.

Applying this method to each customer in a collection of fixed routes and summing the results
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allows for the exact evaluation of a fixed-route policy. Denote by Zvmb the random amount of

demand served at customer vmb and by E[Zvmb ] the expected demand served at customer vmb when

fixed-route policy π(vm) is followed from state s onward. The total value of following a fixed-

route policy π(v) from state s onward is the sum of the expected demand served at each customer:

V π(v)(s) =
∑M

m=1

∑Bm

b=1 E[Zvmb ].

The quantity Zvmb depends on vehicle capacity upon arrival to customer vmb (denoted Qvmb
)

and arrival time at vmb (denoted Avmb ). Denote the random amount of demand at customer vmb by

xvmb . The quantities Qvmb
and Avmb depend on vehicle capacity upon arrival to customer vmb−1 and

the demand at customer vmb−1; the quantity Avmb also depends on the arrival time of the vehicle to

customer vmb−1. We separate the calculation of Qvmb
and Avmb into three cases:

Qvmb
=



Qvmb−1
− xvmb−1

, xvmb−1
< Qvmb−1

,

Q,
xvm

b−1
−Qvm

b−1

Q
=

⌈
xvm

b−1
−Qvm

b−1

Q

⌉
⌈
xvm

b−1
−Qvm

b−1

Q

⌉
Q− xvmb−1

+Qvmb−1
,

xvm
b−1
−Qvm

b−1

Q
<

⌈
xvm

b−1
−Qvm

b−1

Q

⌉ , (18)

and

Avmb =



Avmb−1
+ t(vmb−1, v

m
b ), xvmb−1

< Qvmb−1
,

Avmb−1
+

(
xvm

b−1
−Qvm

b−1

Q
+ 1

)
t(vmb−1, 0)

+

(
xvm

b−1
−Qvm

b−1

Q

)
t(0, vmb−1) + t(0, vmb ),

xvm
b−1
−Qvm

b−1

Q
=

⌈
xvm

b−1
−Qvm

b−1

Q

⌉
Avmb−1

+ t(vmb−1, v
m
b ) +

⌈
xvm

b−1
−Qvm

b−1

Q

⌉
×
(
t(vmb−1, 0) + t(0, vmb−1)

)
,

xvm
b−1
−Qvm

b−1

Q
<

⌈
xvm

b−1
−Qvm

b−1

Q

⌉
,

, (19)

where the boundary conditions vm1 = lm, Qvm1
= qm, and Avm1 = tm are given by the current state

of vehicle m. In the first case, demand at customer vmb−1 is less than vehicle capacity upon arrival

to vmb−1, thus vehicle capacity is simply decremented by the amount of demand and the vehicle

travels directly from vmb−1 to vmb . The second and third cases account for situations where demand

at customer vmb−1 is greater than or equal to vehicle capacity upon arrival to vmb−1, thereby requiring

return trips to the depot to replenish capacity. The required number of return trips is d(xvmb−1
−

Qvmb−1
)/Qe. In the second case, satisfying demand at vmb−1 exactly depletes vehicle capacity, thus
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requiring the vehicle to replenish at the depot one additional time and travel directly to customer

vmb with full capacity. In the third case, there is some capacity remaining after serving demand at

customer vmb−1. After making the necessary return trips to the depot, the vehicle travels directly

from vmb−1 to vmb with the remaining capacity.

To compute Zvmb , we consider the route duration limit, noting that violations of the route dura-

tion limit result in zero demand served. Four cases are considered in the calculation:

Zvmb =



0, Avmb > L− t(vmb , 0),⌊
L−t(vmb ,0)−Avm

b

t(vmb ,0)+t(0,vmb )

⌋
Q+Qvmb

,
⌊
L−t(vmb ,0)−Avm

b

t(vmb ,0)+t(0,vmb )

⌋
<
⌈
xvm

b
−Qvm

b

Q

⌉
,

xvmb , xvmb ≤ Qvmb
and Avmb ≤ L− t(vmb , 0),

xvmb ,
⌊
L−t(vmb ,0)−Avm

b

t(vmb ,0)+t(0,vmb )

⌋
≥
⌈
xvm

b
−Qvm

b

Q

⌉
.

(20)

In the first case, zero demand is served because the route duration limit is violated. In the second

case, only a portion of demand is served because the vehicle does not have enough time to make

the return trips to the depot necessary to serve demand in full. In the third case, demand is served in

full because the vehicle arrives prior to the route duration limit and with sufficient capacity. In the

fourth case, demand is served in full because the vehicle has enough time to make any necessary

replenishments.

For clarity in what follows, we sometimes write Qvmb
, Avmb , and Zvmb as functions of the terms

they depend on. Specifically, we denote by Qvmb
(x, q) the capacity upon initial arrival to customer

vmb when xvmb−1
= x and Qvmb−1

= q; by Avmb (x, q, t) the time of initial arrival to customer vmb when

xvmb−1
= x, Qvmb−1

= q, and Avmb−1
= t; and by Zvmb (x, q, t) the demand served at customer vmb when

xvmb = x, Qvmb
= q, and Avmb = t.

Proposition 1 states three properties we use to assist in calculating the expected demand served

by a fixed-route policy. Property (i) establishes a recursion to calculate the joint probability of

initial arrival time at customer vmb and capacity upon initial arrival to customer vmb . Property

(ii) provides an expression to calculate the expected demand served at customer vmb . We discuss

property (iii) below. In each result, we assume customer demands follow a discrete probability

distribution with a finite support. We denote by fxn(·) the probability mass function of demand at

customer n.

Proposition 1 (Fixed-Route Policy Evaluation). The following properties hold when evaluating a

fixed-route policy.
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(i) The joint probability of arriving to customer vmb with available capacity q and at time t is

P
{
Qvmb

= q, Avmb = t
}

=
∑
q′

∑
t′

∑
x′

1
{
q = Qvmb

(x′, q′), t = Avmb (x′, q′, t′)
}

× P
{
Qvmb−1

= q′, Avmb−1
= t′

}
× fxvm

b−1
(x′), (21)

where 1{·} is an indicator function that returns 1 if the statement {·} is true and 0 otherwise.

(ii) The expected demand served at customer vmb is

E
[
Zvmb

]
=
∑
q

∑
t

∑
x

Zvmb (x, q, t)× P
{
Qvmb

= q, Avmb = t
}
× fxvm

b
(x). (22)

(iii) Assume travel times t(·, ·) satisfy the triangle inequality. If Zvmb < xvmb , then Zvmj = 0 for

j = b+ 1, b+ 2, . . . , Bm.

Proof. We begin by proving property (i):

P{Qvmb
= q,Avmb = t}

=
∑
q′

∑
t′

∑
x′

P
{
Qvmb

= q, Avmb = t
∣∣Qvmb−1

= q′, Avmb−1
= t′, xvmb−1

= x′
}

(23)

× P
{
Qvmb−1

= q′, Avmb−1
= t′, xvmb−1

= x′
}

(24)

=
∑
q′

∑
t′

∑
x′

1
{
q = Qvmb

(x′, q′), t = Avmb (x′, q′, t′)
}

(25)

× P
{
Avmb−1

= t′, Avmb−1
= t′

}
× fxvm

b−1
(x′). (26)

Equations (23) and (24) hold by the law of total probability. The conditional probability term in

(23) is one if q = Qvmb
(x′, q′) and t = Avmb (x′, q′, t′) and is zero otherwise. Thus, the conditional

probability term is equivalent to the indicator function in (25). Equation (26) follows from the

assumed independence of customer demands.

We now prove property (ii):

E
[
Zvmb

]
=
∑
q

∑
t

∑
x

E
[
Zvmb

∣∣Qvmb
= q, Avmb = t, xvmb = x

]
(27)

× P
{
Qvmb

= q, Avmb = t, xvmb = x
}

(28)
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=
∑
q

∑
t

∑
x

Zvmb (x, q, t)× P
{
Qvmb

= q, Avmb = t
}
× fxvm

b
(x). (29)

Equations (27) and (28) hold by the law of iterated expectations. Because the expectation in (27)

is conditioned on q, t, and x, it is given directly by (20), which we denote by Zvmb (x, q, t). The

remainder of (29) follows from the assumed independence of customer demands.

We now prove property (iii). Since Zvmb < xvmb , we have one of two cases. In the first case,

Zvmb = 0, implying by (20) thatAvmb > L−t(vmb , 0). By the triangle inequality, this implies that for

any Avmb+1
that may result from (19), Avmb+1

> L− t(vmb+1, 0). Thus, Zvmb+1
= 0. The same reasoning

applies to the demand served at customers vmb+2, . . . , v
m
Bm . In the second case, 0 < Zvmb < xvmb ,

implying by (20) that b(L− t(vmb , 0)−Avmb )/(t(vmb , 0)+ t(0, vmb ))c < d(xvmb −Qvmb
)/Qe, meaning

that the number of replenishments required to satisfy demand in full is greater than the number

of replenishments possible before violating the route duration limit L. Let t′ be the time at which

demand at customer vmb is served in full. It must be that t′ > L − t(vmb , 0). Then, by the triangle

inequality, t′ > L−t(vmb , vmb+1)−t(vmb+1, 0), meaning thatAvmb+1
> L−t(vmb+1, 0). Thus, Zvmb+1

= 0.

Then, using the same arguments as in the first case, demand served at customers vmb+2, . . . , v
m
Bm is

also zero.

Algorithm 2 employs properties (i) and (ii) of Proposition 1 to calculate the expected demand

served at customer vmb . To ease the notation, we define g(vmb , q, t) = P{Qvmb
= q, Avmb = t}. The

support of xvmb is denoted supp(xvmb ). Lines 1-4 of Algorithm 2 initialize the procedure. Line 1

assigns a probability of one to the current state of vehicle m. Line 2 assigns a probability of zero

to all other possible states. Line 3 initializes joint capacity and arrival probabilities for all other

customers to zero and line 4 initializes the expected demand served at customer vmb to zero; these

quantities are updated as Algorithm 2 is executed. Lines 5-8 utilize property (i) of Proposition 1 to

build the joint probabilities of capacities and arrival times at customers vm1 , v
m
2 , . . . , v

m
b−1 . Finally,

lines 9-11 apply property (ii) of Proposition 1 to calculate the expected demand served at customer

vmb .

Assuming integer demand values and travel times, the worst-case complexity of Algorithm 2

is O(b × Q × L × maxj=1,...,b{|supp(xvmj )|}). Although the complexity is pseudo-polynomial,

executing Algorithm 2 can still be computationally demanding. When travel times satisfy the tri-

angle inequality, property (iii) of Proposition 1 provides a mechanism to reduce the computational

burden. For a given capacity q′, arrival time t′, and demand x′ at customer vmj−1, property (iii) of

Proposition 1 shows that if Zvmj−1
(x′, q′, t′) < x′, then demand served will be zero at all subsequent

customers on any sample path, thereby making no contribution to the expected demand served.

Thus, in line 7 of Algorithm 2, instead of iterating over the entire support, we can restrict the loop
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Algorithm 2 Calculation of Expected Demand Served at Customer vmb
1: g(vm1 , qm, tm)← 1

2: g(vm1 , q, t)← 0 for all (q, t) 6= (qm, tm)

3: g(vmj , q, t)← 0 for j = 2, 3, . . . , b and for all (q, t)

4: E[Zvmb ]← 0

5: for j = 2, 3, . . . , b do
6: for g(vmj−1, q

′, t′) 6= 0 do
7: for x′ ∈ supp(xvmj−1

) do
8: g(vmj , Qvmj

(x′, q′), Avmj (x′, q′, t′))←
g(vmj , Qvmj

(x′, q′), Avmj (x′, q′, t′)) + g(vmj−1, q
′, t′)× fxvm

j−1
(x′)

9: for g(vmb , q
′, t′) 6= 0 do

10: for x′ ∈ supp(xvmb ) do
11: E[Zvmb ]← E[Zvmb ] + Zvmb (x′, q′, t′)× g(vmb , q

′, t′)× fxvm
b

(x′)

to iterate over {x′ ∈ supp(xvmj−1
) : Z(x′, q′, t′) = x′}. When the duration limit is even moder-

ately restrictive, modifying Algorithm 2 in this fashion significantly reduces the number of joint

probability terms that need to be considered.

B.2 Evaluation via Simulation

Given P randomly generated demand realizations from F , x̂1, . . . , x̂P , the expected demand served

at customer vmb is estimated to be Ê[Zvmb ] = P−1
∑P

p=1 Zvmb (x̂p), where Zvmb (x̂p) denotes the de-

mand served at customer vmb given the pth demand realization x̂p. To calculate Zvmb (x̂p), replace

xmb in (20) with x̂pvmb , the pth generated demand realization at customer vmb . The same is done in

equations (18) and (19). Because Ê[Zvmb ] is the sample mean of demand served, it is an unbiased

and consistent estimator of E[Zvmb ]. The total value of following a fixed-route policy π(v) from

state s onward is estimated to be the sum of the estimated demand served at each customer:

V̂ π(v)(s) =
M∑
m=1

Bm∑
b=1

Ê
[
Zvmb

]
. (30)

When calculating V̂ π(v̄)(s), where v̄ is in the relocation neighborhood of v (see §4.2), it is not

necessary to estimate the expected demand served at each customer in v̄. Because the expected

demand served at a customer depends only on the preceding sequence of customers, it is only

necessary to estimate the expected demand served at customers where the preceding sequence has

changed; demand served at other customers remains the same as in v. More generally, let v be the
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current set of fixed routes and v̄ a set of fixed routes in the relocation neighborhood of v obtained

by relocating a customer vmi after customer vm′j . If m 6= m′, then it is only necessary to estimate

E[Zv̄mb ] for b = i, . . . , |vm|− 1 and E[Zv̄m′b
] for b = j+ 1, . . . , |vm′ |+ 1. If m = m′ and i < j, then

it is only necessary to estimate E[Zv̄mb ] for b = i, . . . , |vm|. If m = m′ and i > j, then it is only

necessary to estimate E[Zv̄mb ] for b = j + 1, . . . , |vm|. Expected demand served at other customers

in v̄ remains the same as in v.

In the computational experiments of §6, when estimating the expected demand served by a

fixed-route policy in the local search procedure, we use P = 30 demand samples. We observe that

30 demand samples provide an acceptable tradeoff between solution quality and computing time.

This decision is based on experiments using values of P ranging from five to several hundred. To

further reduce computation, we utilize common random numbers by maintaining the same set of P

demand samples during each execution of the local search procedure. As noted by Birattari et al.

(2008), this practice reduces the variance of the difference between two solution values and also

decreases computing time.

C Simulated Annealing for Benchmark Fixed-Route Policies

The benchmark fixed-route policies are obtained via a simulated annealing procedure. Simulated

annealing is a local search algorithm in which non-improving moves are probabilistically accepted

in an attempt to avoid becoming trapped in a low-quality, locally-optimal solution (Kirkpatrick

et al., 1983; Johnson et al., 1989, 1991). Given a current set of fixed routes, the procedure generates

a neighboring set of fixed routes via one of the following five neighborhood structures employed

by Bent and Van Hentenryck (2004) in a simulated annealing algorithm for the VRP with time win-

dows: two-exchange, Or-exchange, relocation, exchange, and crossover. A detailed explanation

of these neighborhoods is given in Kindervater and Savelsbergh (2003). At each iteration of our

simulated annealing implementation, we randomly generate a candidate set of fixed routes from a

randomly selected neighborhood of the current set of fixed routes. Denote the policy induced by

the current set of fixed routes by π(v) and the policy induced by a neighboring set of fixed routes by

π(v̄). As in (30), we denote estimates of the expected demand served by following these policies

from state s on as V̂ π(v)(s) and V̂ π(v̄)(s), respectively. We accept the neighboring fixed-route pol-

icy with probability exp(−(V̂ π(v)(s) − V̂ π(v̄)(s))+/τ), where (y)+ = y if y > 0 and 0 otherwise

and τ is the current temperature, a control parameter in simulated annealing (Kirkpatrick et al.,

1983).

The simulated annealing procedure begins with an initial set of M fixed routes obtained by
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assigning customers to routes in a radial fashion with respect to the depot. We generate 7,000

neighbor solutions at each temperature, employ a temperature multiplier of 0.95, and begin with

an initial temperature of 100. The procedure terminates after at least 100 temperature decrements

and not updating the best-found solution for 75 successive temperature decrements. Our experience

suggests that these parameters yield high-quality solutions for the problem instances we consider.

We run the procedure 10 times and select as the benchmark policy the fixed routes with the largest

expected demand served. When estimating the expected demand served by a fixed-route policy

in the simulated annealing procedure, we use P = 100 demand samples. As in the local search

procedure of §4.2, we use the same set of P demand samples throughout the simulated annealing

procedure.

D Disaggregated Results of Computational Experiments

In this appendix, we report the disaggregated results of our computational experiments. Table 7

displays the expected demand served by the benchmark fixed-route policies. Tables 8 and 9 re-

spectively display the expected demand served by the rolling horizon procedure with and without

decomposition. Table 10 shows the expected demand for each problem instance; expected demand

does not change with variability in customer demand. Tables 11, 12, and 13 depict disaggregated

results for our rollout policies without decomposition. Tables 14, 15, and 16 present disaggregated

results for our rollout policies with static decomposition. Tables 17, 18, and 19 display disaggre-

gated results for our rollout policies with dynamic decomposition. In Tables 8-9 and 11-19, each

entry is the average demand served by the respective method across 500 realizations of the problem

instance. The values in Tables 7 and 10 are exact calculations. Table 20 is similar to Table 3, except

that Table 20 displays the average number of CPU seconds required to execute each method for an

entire instance; Table 3 only presents the average number of CPU seconds per decision epoch.
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Table 7: Average Demand Served by Static Fixed Routes
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 131.63 214.84 276.42 226.58 315.96 331.41 294.40 331.99 332.00

C101 (25) 192.68 296.33 319.58 306.46 436.77 459.98 387.85 459.31 460.00

R101 (50) 337.23 481.95 623.42 500.62 704.77 720.72 637.13 720.92 720.99

C101 (50) 315.69 526.47 589.30 525.37 767.80 857.62 662.85 858.62 859.95

R101 (75) 568.79 779.50 970.15 808.54 1074.73 1078.83 1002.32 1078.79 1078.86

C101 (75) 733.15 1076.52 1286.69 1048.17 1357.75 1359.66 1268.60 1359.57 1359.96

R101 (100) 771.23 1083.56 1346.60 1090.28 1453.40 1457.25 1345.34 1457.59 1457.72

C101 (100) 858.89 1319.87 1627.62 1278.69 1776.58 1809.30 1599.42 1809.29 1809.83

Moderate Variability
R101 (25) 128.69 205.72 270.71 213.26 296.70 326.31 272.12 331.24 332.00

C101 (25) 184.31 280.84 313.56 285.96 396.76 450.36 364.68 454.22 459.74

R101 (50) 303.84 459.44 593.97 471.01 663.38 718.58 599.46 718.80 720.87

C101 (50) 300.66 487.55 576.23 484.06 693.95 833.09 628.25 840.62 858.95

R101 (75) 522.43 738.35 928.74 762.79 1042.20 1078.05 952.69 1077.91 1078.72

C101 (75) 683.79 1008.79 1236.12 992.37 1315.48 1358.71 1201.19 1356.39 1359.52

R101 (100) 711.22 1011.36 1281.26 1028.11 1406.08 1456.74 1278.16 1456.09 1457.52

C101 (100) 808.02 1257.14 1561.16 1207.82 1671.49 1799.09 1510.13 1804.79 1808.89

High Variability
R101 (25) 131.14 194.20 256.01 198.74 278.98 319.03 259.45 328.35 331.98

C101 (25) 173.81 257.66 302.04 264.96 368.17 434.54 341.96 437.41 458.94

R101 (50) 293.27 439.67 562.54 446.32 627.70 709.53 571.36 714.48 720.80

C101 (50) 283.10 455.82 552.80 455.12 652.22 790.08 593.24 805.53 858.63

R101 (75) 485.48 706.25 893.09 730.22 996.87 1076.39 905.63 1076.02 1078.26

C101 (75) 644.45 964.15 1165.14 939.60 1255.78 1357.45 1128.58 1352.25 1359.61

R101 (100) 665.41 971.54 1226.79 979.67 1356.60 1453.37 1218.94 1453.61 1456.93

C101 (100) 764.04 1186.03 1469.21 1139.66 1566.30 1765.16 1415.73 1783.52 1808.56

Table 8: Average Demand Served by Rolling Horizon with Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 137.27 219.65 276.98 229.22 317.62 331.54 298.33 332.04 332.04

C101 (25) 193.17 296.86 319.69 308.61 445.77 459.64 388.77 459.04 459.64

R101 (50) 341.97 489.16 625.18 507.16 709.16 720.82 645.94 721.12 721.15

C101 (50) 317.44 530.69 590.17 527.55 786.20 857.94 665.96 858.24 859.89

R101 (75) 580.62 790.87 974.40 818.52 1075.89 1078.36 1011.37 1078.41 1078.42

C101 (75) 735.12 1084.63 1288.37 1053.50 1358.37 1359.93 1275.02 1359.95 1360.03

R101 (100) 779.34 1101.82 1357.90 1106.99 1455.62 1458.41 1357.89 1458.43 1458.53

C101 (100) 862.48 1331.90 1634.40 1287.92 1790.56 1810.64 1613.97 1810.56 1810.81

Moderate Variability
R101 (25) 130.81 207.93 270.52 218.77 304.51 328.58 281.70 331.35 331.61

C101 (25) 190.64 284.23 315.42 288.50 405.29 455.67 366.19 454.55 459.07

R101 (50) 306.78 463.29 599.07 479.60 674.48 719.05 610.88 719.85 720.43

C101 (50) 302.49 492.65 577.03 492.69 708.24 838.97 631.90 845.26 858.09

R101 (75) 532.65 752.04 935.02 774.85 1049.17 1077.20 960.59 1077.28 1077.55

C101 (75) 685.46 1014.33 1240.19 998.85 1325.93 1359.70 1212.07 1358.63 1360.37

R101 (100) 727.13 1020.29 1288.34 1042.55 1418.09 1457.02 1294.14 1456.60 1457.23

C101 (100) 813.09 1266.22 1565.47 1218.57 1690.17 1805.70 1520.58 1807.35 1809.57

High Variability
R101 (25) 132.55 197.06 257.73 205.11 289.03 319.97 266.63 329.44 331.71

C101 (25) 173.73 260.71 303.59 266.89 371.79 435.69 346.24 442.17 459.08

R101 (50) 293.09 442.18 562.18 455.23 632.74 708.14 581.68 711.06 716.85

C101 (50) 285.14 456.00 552.72 461.10 653.70 789.17 599.19 808.10 854.30

R101 (75) 490.59 710.10 899.77 736.22 1003.19 1073.66 914.74 1073.51 1075.44

C101 (75) 648.07 965.41 1170.11 944.13 1260.48 1357.97 1133.24 1356.15 1360.29

R101 (100) 672.88 975.18 1226.37 998.23 1359.12 1448.77 1231.22 1450.71 1452.55

C101 (100) 766.18 1188.06 1470.60 1144.68 1580.18 1776.49 1425.86 1787.21 1805.89
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Table 9: Average Demand Served by Rolling Horizon without Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 140.52 219.88 277.03 229.68 318.17 331.71 299.64 332.04 332.04

C101 (25) 209.28 296.98 320.03 310.74 452.05 459.64 391.39 459.24 459.64

R101 (50) 350.81 492.65 625.31 509.06 709.83 721.13 648.59 721.15 721.15

C101 (50) 319.58 531.85 593.54 532.46 792.23 858.97 671.07 859.83 859.92

R101 (75) 582.42 794.76 976.47 824.36 1077.45 1078.40 1018.85 1078.42 1078.42

C101 (75) 749.88 1089.16 1291.66 1060.88 1359.11 1359.99 1285.85 1360.04 1360.05

R101 (100) 789.77 1103.90 1362.27 1113.41 1456.67 1458.59 1376.21 1458.60 1458.59

C101 (100) 878.75 1339.14 1636.33 1301.72 1795.10 1810.78 1636.86 1810.83 1810.84

Moderate Variability
R101 (25) 133.50 208.98 270.52 221.37 309.99 330.05 287.27 331.59 331.61

C101 (25) 206.80 288.78 318.54 297.63 419.18 456.68 380.73 458.34 459.28

R101 (50) 316.18 466.69 602.90 490.59 680.11 719.75 626.67 720.37 720.53

C101 (50) 319.59 499.83 581.52 516.03 733.05 847.34 655.15 854.22 858.62

R101 (75) 555.44 762.86 946.09 796.72 1059.98 1077.56 993.32 1077.58 1077.58

C101 (75) 723.91 1039.45 1268.25 1029.13 1341.16 1360.45 1257.05 1360.49 1360.55

R101 (100) 757.97 1058.78 1303.08 1079.08 1433.99 1457.26 1340.49 1457.36 1457.37

C101 (100) 857.42 1291.26 1594.82 1268.75 1743.40 1809.16 1588.52 1809.92 1809.97

High Variability
R101 (25) 136.55 201.34 257.97 211.86 296.36 324.61 275.62 331.26 331.73

C101 (25) 193.52 276.17 311.39 288.42 396.53 451.21 368.53 453.93 460.01

R101 (50) 303.71 451.62 565.27 473.95 652.44 711.11 609.13 716.22 716.93

C101 (50) 300.02 478.45 564.60 494.88 701.92 814.45 638.61 836.66 855.57

R101 (75) 520.90 736.35 914.94 768.96 1034.07 1075.55 964.08 1075.58 1075.64

C101 (75) 697.37 1006.75 1217.73 1009.46 1314.32 1359.97 1219.56 1360.54 1360.58

R101 (100) 723.59 1018.95 1257.22 1053.17 1403.36 1452.71 1304.16 1452.86 1452.86

C101 (100) 828.75 1227.63 1520.97 1233.83 1675.34 1800.65 1534.04 1803.53 1806.58

Table 10: Expected Demand
Duration short medium long
Capacity small medium large small medium large small medium large

R101 (25) 332.00 332.00 332.00 332.00 332.00 332.00 332.00 332.00 332.00

C101 (25) 320.00 320.00 320.00 460.00 460.00 460.00 460.00 460.00 460.00

R101 (50) 721.00 721.00 721.00 721.00 721.00 721.00 721.00 721.00 721.00

C101 (50) 630.00 630.00 630.00 860.00 860.00 860.00 860.00 860.00 860.00

R101 (75) 1079.00 1079.00 1079.00 1079.00 1079.00 1079.00 1079.00 1079.00 1079.00

C101 (75) 1300.00 1300.00 1300.00 1360.00 1360.00 1360.00 1360.00 1360.00 1360.00

R101 (100) 1438.00 1438.00 1438.00 1458.00 1458.00 1458.00 1458.00 1458.00 1458.00

C101 (100) 1690.00 1690.00 1690.00 1810.00 1810.00 1810.00 1810.00 1810.00 1810.00
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Table 11: Average Demand Served by One-Step Rollout without Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 155.05 220.54 277.09 232.76 319.62 332.00 303.63 332.04 332.04

C101 (25) 213.72 297.27 320.02 313.65 452.66 459.64 392.37 459.64 459.64

R101 (50) 355.23 494.19 625.80 517.13 713.42 721.15 656.91 721.15 721.15

C101 (50) 331.73 534.18 594.89 541.84 799.66 858.76 678.20 859.86 859.92

Moderate Variability
R101 (25) 143.15 209.81 273.21 226.84 313.36 330.57 293.90 331.58 331.61

C101 (25) 210.58 291.01 319.07 305.50 431.14 458.96 382.88 458.50 459.28

R101 (50) 330.45 474.34 603.76 501.38 691.49 720.11 637.17 720.48 720.53

C101 (50) 320.02 504.01 582.10 527.23 749.10 850.57 662.09 857.16 858.75

High Variability
R101 (25) 144.00 203.41 260.00 218.17 301.71 326.68 282.02 331.42 331.73

C101 (25) 199.35 279.76 312.29 296.49 403.18 454.88 372.22 452.35 460.01

R101 (50) 315.49 461.48 571.41 484.27 661.52 712.57 616.46 716.45 716.93

C101 (50) 308.86 483.24 565.32 501.75 714.57 827.35 645.01 840.19 855.58

Table 12: Average Demand Served by Post-Decision Rollout without Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 155.14 220.00 277.09 232.76 319.28 332.00 303.90 332.04 332.04

C101 (25) 205.95 297.21 320.03 313.73 453.54 459.64 391.76 459.64 459.64

R101 (50) 355.67 494.67 626.04 516.38 715.33 721.15 657.39 721.15 721.15

C101 (50) 330.45 534.06 593.03 542.14 799.69 858.71 679.88 859.88 859.92

Moderate Variability
R101 (25) 142.63 209.59 273.21 226.49 312.42 330.23 293.39 331.52 331.61

C101 (25) 208.08 290.13 319.22 304.49 429.44 458.54 383.20 458.71 459.28

R101 (50) 330.33 475.66 604.21 500.46 690.61 720.09 638.46 720.45 720.53

C101 (50) 319.05 502.50 582.49 524.25 748.47 850.48 662.07 856.95 858.75

High Variability
R101 (25) 143.50 202.53 260.02 216.35 302.30 326.96 282.07 331.44 331.73

C101 (25) 200.30 278.42 311.32 295.42 403.95 454.54 370.29 452.63 460.01

R101 (50) 316.20 462.03 570.23 484.55 660.90 713.41 617.06 716.36 716.93

C101 (50) 309.49 483.51 565.53 501.34 711.78 823.75 645.00 839.05 855.58
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Table 13: Average Demand Served by Hybrid Rollout without Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 149.24 220.10 277.09 232.21 318.97 331.81 302.46 332.04 332.04

C101 (25) 213.80 296.97 320.03 311.65 451.94 459.64 391.03 459.39 459.64

R101 (50) 350.86 494.06 625.58 510.60 710.62 721.13 650.25 721.15 721.15

C101 (50) 322.27 532.59 596.77 531.98 797.26 858.94 671.33 859.79 859.91

R101 (75) 586.28 795.70 977.28 826.46 1077.67 1078.41 1023.13 1078.42 1078.42

C101 (75) 753.45 1092.23 1291.37 1060.48 1359.28 1359.99 1285.90 1360.05 1360.05

Moderate Variability
R101 (25) 141.38 209.20 270.74 223.66 311.59 329.99 290.16 331.54 331.61

C101 (25) 209.77 289.18 318.81 301.90 421.44 457.39 380.67 458.35 459.28

R101 (50) 323.27 467.44 603.95 493.92 681.69 719.79 629.40 720.30 720.53

C101 (50) 317.48 500.35 581.65 514.28 736.46 846.98 654.61 855.19 858.62

R101 (75) 557.47 764.88 947.67 801.21 1060.22 1077.41 994.77 1077.56 1077.58

C101 (75) 724.66 1038.14 1266.35 1030.25 1340.35 1360.48 1254.94 1360.45 1360.55

High Variability
R101 (25) 141.35 202.95 259.81 215.02 299.73 325.89 279.73 331.36 331.73

C101 (25) 195.57 274.97 311.05 288.48 393.22 450.54 367.84 451.89 460.01

R101 (50) 308.06 454.74 571.49 477.59 654.35 712.14 608.70 715.90 716.93

C101 (50) 301.57 477.69 564.18 491.80 703.16 814.09 635.66 836.88 855.54

R101 (75) 525.73 738.71 915.64 772.24 1037.18 1075.59 966.28 1075.58 1075.64

C101 (75) 697.05 1007.06 1216.34 1005.40 1310.54 1360.04 1217.06 1360.45 1360.58

Table 14: Average Demand Served by One-Step Rollout with Static Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 140.63 219.52 277.00 231.05 319.12 331.54 301.88 332.04 332.04

C101 (25) 197.48 296.86 319.69 310.31 447.91 459.64 389.80 459.04 459.64

R101 (50) 344.06 490.30 625.24 508.92 709.72 720.93 649.84 721.12 721.15

C101 (50) 317.46 533.34 590.17 530.07 791.82 857.92 666.92 859.17 859.91

R101 (75) 584.01 791.94 974.73 827.77 1076.26 1078.35 1016.50 1078.42 1078.42

C101 (75) 736.81 1086.75 1288.37 1054.55 1358.36 1359.93 1276.63 1359.99 1360.05

R101 (100) 782.76 1104.59 1360.02 1113.61 1455.69 1458.47 1363.90 1458.43 1458.55

C101 (100) 863.40 1335.71 1634.51 1293.76 1793.78 1810.69 1625.16 1810.73 1810.81

Moderate Variability
R101 (25) 139.81 208.01 273.09 222.09 307.80 328.48 286.75 331.37 331.61

C101 (25) 191.46 284.23 315.42 292.30 410.09 455.90 369.23 454.72 459.07

R101 (50) 312.03 463.42 599.40 485.28 678.88 719.05 616.95 719.90 720.43

C101 (50) 303.57 492.40 577.03 497.40 715.53 839.21 636.47 846.37 858.13

R101 (75) 546.82 754.55 935.41 782.85 1049.72 1077.36 966.30 1077.37 1077.56

C101 (75) 690.66 1015.22 1240.33 1000.75 1325.95 1359.73 1217.85 1358.67 1360.37

R101 (100) 738.37 1027.34 1290.48 1052.75 1420.65 1457.02 1302.57 1456.71 1457.36

C101 (100) 814.45 1275.72 1566.98 1225.48 1705.62 1805.67 1531.68 1807.03 1809.62

High Variability
R101 (25) 137.28 198.85 260.05 211.30 292.10 320.56 271.23 329.94 331.71

C101 (25) 180.06 260.71 303.59 272.10 373.93 436.11 350.11 447.84 459.08

R101 (50) 295.67 444.18 562.40 460.08 638.37 708.38 586.57 711.93 716.84

C101 (50) 287.41 461.85 552.72 468.04 660.16 789.14 604.16 817.66 854.37

R101 (75) 498.09 712.06 903.31 744.61 1008.21 1073.71 924.09 1074.06 1075.48

C101 (75) 650.53 966.30 1169.94 948.10 1265.66 1358.07 1140.14 1355.99 1360.47

R101 (100) 683.94 980.09 1227.50 1011.39 1364.37 1449.43 1241.87 1450.76 1452.80

C101 (100) 771.32 1196.41 1471.10 1154.53 1599.86 1776.68 1432.99 1787.65 1806.11

44



Table 15: Average Demand Served by Post-Decision Rollout with Static Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 140.63 220.19 277.00 230.98 319.08 331.54 301.87 332.04 332.04

C101 (25) 197.46 296.86 319.69 310.31 447.91 459.64 389.96 459.04 459.64

R101 (50) 344.06 490.30 625.21 509.26 709.74 720.88 649.79 721.12 721.15

C101 (50) 317.45 533.34 590.17 530.10 791.82 857.95 666.92 859.17 859.91

R101 (75) 584.19 791.93 974.69 826.70 1076.31 1078.36 1016.78 1078.42 1078.42

C101 (75) 736.82 1086.70 1288.37 1054.22 1358.31 1359.93 1276.56 1360.02 1360.05

R101 (100) 783.44 1104.64 1360.33 1113.35 1455.70 1458.47 1363.79 1458.43 1458.54

C101 (100) 863.40 1335.71 1634.51 1294.05 1793.74 1810.72 1624.83 1810.73 1810.83

Moderate Variability
R101 (25) 139.81 208.01 273.09 221.83 307.77 328.50 286.90 331.40 331.61

C101 (25) 191.45 284.23 315.42 292.32 410.07 455.90 369.29 454.71 459.07

R101 (50) 312.81 463.49 599.40 484.62 677.90 719.06 616.62 719.93 720.43

C101 (50) 303.63 492.31 577.03 497.19 715.33 839.20 636.63 845.88 858.09

R101 (75) 546.91 754.69 935.31 782.99 1049.39 1077.33 965.96 1077.37 1077.56

C101 (75) 690.69 1013.60 1240.32 999.94 1325.95 1359.76 1217.79 1358.73 1360.46

R101 (100) 738.96 1026.94 1290.30 1051.53 1420.64 1457.03 1301.57 1456.82 1457.30

C101 (100) 814.48 1273.15 1567.05 1224.92 1705.82 1805.68 1531.64 1807.05 1809.69

High Variability
R101 (25) 137.28 199.77 260.05 210.27 292.01 320.50 271.28 329.98 331.71

C101 (25) 180.06 260.71 303.59 271.11 374.29 436.11 349.70 447.88 459.08

R101 (50) 295.66 444.15 562.40 458.83 638.31 708.39 584.77 711.74 716.84

C101 (50) 287.33 461.85 552.72 468.08 660.09 789.18 603.56 817.11 854.40

R101 (75) 497.40 712.01 903.69 743.40 1008.06 1073.75 922.06 1073.92 1075.49

C101 (75) 650.05 966.53 1169.58 948.29 1265.75 1357.97 1139.76 1356.03 1360.42

R101 (100) 683.45 979.26 1227.30 1010.29 1366.30 1449.89 1240.39 1450.85 1452.76

C101 (100) 770.91 1195.83 1471.10 1154.08 1600.14 1776.89 1432.50 1787.64 1806.17

Table 16: Average Demand Served by Hybrid Rollout with Static Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 140.63 220.19 277.00 231.88 319.08 331.53 301.76 332.04 332.04

C101 (25) 197.48 296.86 319.69 310.31 447.89 459.64 389.98 459.04 459.64

R101 (50) 343.77 490.22 625.21 509.87 709.34 720.88 648.47 721.12 721.15

C101 (50) 317.34 533.34 590.17 529.83 791.64 857.96 666.93 858.80 859.91

R101 (75) 585.20 791.71 974.56 824.13 1076.26 1078.36 1015.89 1078.42 1078.42

C101 (75) 736.69 1086.67 1288.37 1054.43 1358.30 1359.93 1277.32 1359.99 1360.05

R101 (100) 783.26 1099.78 1358.91 1111.95 1455.63 1458.48 1363.49 1458.45 1458.53

C101 (100) 863.40 1335.71 1634.42 1293.61 1793.63 1810.71 1624.43 1810.73 1810.81

Moderate Variability
R101 (25) 139.75 208.01 273.03 221.57 307.70 328.43 285.65 331.37 331.61

C101 (25) 191.39 284.23 315.42 292.22 409.93 455.75 369.34 454.69 459.07

R101 (50) 312.74 463.20 599.43 483.55 677.55 718.87 616.63 719.89 720.43

C101 (50) 303.57 492.85 577.03 497.10 714.37 838.94 636.34 846.14 858.10

R101 (75) 541.46 753.80 935.20 782.53 1049.42 1077.30 963.94 1077.33 1077.56

C101 (75) 690.83 1015.18 1240.24 999.53 1325.85 1359.71 1216.77 1358.73 1360.46

R101 (100) 738.28 1025.45 1289.43 1050.29 1419.73 1457.03 1301.13 1456.64 1457.26

C101 (100) 814.37 1273.22 1566.94 1224.66 1705.42 1805.65 1530.99 1807.30 1809.66

High Variability
R101 (25) 136.35 198.82 260.05 210.12 291.59 320.67 271.01 330.01 331.71

C101 (25) 179.96 260.71 303.59 271.11 374.19 435.89 349.33 445.67 459.08

R101 (50) 295.68 442.77 562.41 458.76 637.53 708.52 584.03 711.70 716.88

C101 (50) 287.28 456.91 552.72 467.26 659.54 789.17 603.02 817.54 854.33

R101 (75) 497.70 711.79 901.24 744.38 1007.50 1073.76 920.98 1073.69 1075.49

C101 (75) 649.88 966.48 1169.93 948.03 1265.29 1357.97 1139.26 1356.38 1360.44

R101 (100) 682.79 978.20 1227.18 1010.26 1364.28 1449.00 1240.33 1450.90 1452.73

C101 (100) 770.91 1195.49 1470.72 1154.12 1599.29 1776.59 1432.13 1787.20 1805.98
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Table 17: Average Demand Served by One-Step Rollout with Dynamic Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 152.11 219.74 277.09 232.63 319.14 331.70 302.73 332.04 332.04

C101 (25) 209.83 296.97 320.02 312.27 451.39 459.64 391.08 459.24 459.64

R101 (50) 351.67 493.06 625.39 510.52 710.83 721.12 650.84 721.12 721.15

C101 (50) 319.45 533.70 593.32 532.63 795.87 858.79 669.99 859.75 859.92

R101 (75) 584.68 794.93 977.95 826.95 1077.39 1078.42 1021.12 1078.42 1078.42

C101 (75) 751.00 1092.96 1291.51 1061.38 1359.14 1359.99 1286.45 1360.04 1360.05

R101 (100) 792.43 1106.24 1362.62 1117.00 1456.68 1458.60 1376.81 1458.59 1458.60

C101 (100) 878.64 1341.20 1636.07 1301.80 1798.22 1810.78 1636.46 1810.80 1810.84

Moderate Variability
R101 (25) 141.56 209.13 273.18 224.39 311.90 330.35 291.36 331.57 331.61

C101 (25) 208.37 288.69 318.66 298.25 420.88 457.27 381.17 458.25 459.28

R101 (50) 320.19 467.32 603.27 494.67 681.22 719.84 631.75 720.22 720.53

C101 (50) 321.19 499.96 581.76 516.89 737.07 847.32 656.22 854.80 858.69

R101 (75) 558.81 764.84 946.31 800.42 1059.83 1077.55 996.08 1077.58 1077.58

C101 (75) 723.07 1039.51 1267.74 1034.08 1340.92 1360.46 1257.67 1360.51 1360.55

R101 (100) 761.28 1063.79 1303.76 1084.71 1436.19 1457.26 1346.12 1457.36 1457.37

C101 (100) 857.15 1296.50 1595.76 1269.63 1747.43 1809.22 1592.28 1809.90 1809.97

High Variability
R101 (25) 142.87 201.72 260.50 216.09 299.21 325.57 279.42 331.22 331.73

C101 (25) 194.71 274.96 310.96 288.85 398.85 451.04 370.33 453.53 460.01

R101 (50) 305.79 454.13 572.17 477.24 655.32 711.08 611.74 716.01 716.93

C101 (50) 300.39 479.43 564.66 494.95 704.28 813.91 639.09 836.32 855.58

R101 (75) 524.07 739.55 916.86 774.19 1036.06 1075.54 968.85 1075.57 1075.64

C101 (75) 699.44 1005.64 1218.84 1010.57 1315.31 1360.03 1223.25 1360.56 1360.58

R101 (100) 726.02 1022.61 1256.95 1059.16 1404.77 1452.69 1311.49 1452.86 1452.86

C101 (100) 828.12 1236.29 1522.65 1232.56 1673.39 1800.49 1537.48 1803.57 1806.58

Table 18: Average Demand Served by Post-Decision Rollout with Dynamic Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 152.30 220.42 277.09 232.23 318.95 331.71 301.43 332.04 332.04

C101 (25) 210.30 296.98 319.99 311.50 451.93 459.64 390.78 459.35 459.64

R101 (50) 351.03 493.15 625.38 510.71 711.02 721.10 651.40 721.13 721.15

C101 (50) 319.49 533.49 593.68 532.50 795.86 858.96 670.47 859.79 859.92

R101 (75) 584.63 795.47 977.87 827.94 1077.50 1078.42 1022.19 1078.42 1078.42

C101 (75) 751.69 1092.90 1291.44 1061.46 1359.18 1359.99 1286.67 1360.04 1360.05

R101 (100) 792.17 1106.24 1361.62 1115.98 1456.68 1458.60 1376.29 1458.60 1458.60

C101 (100) 878.65 1340.69 1636.05 1301.51 1798.83 1810.78 1638.35 1810.80 1810.84

Moderate Variability
R101 (25) 142.18 209.20 273.03 223.50 312.21 330.23 290.31 331.58 331.61

C101 (25) 209.97 289.22 318.37 298.50 419.99 457.12 380.86 458.34 459.28

R101 (50) 320.02 467.30 602.20 494.25 681.12 719.80 631.70 720.27 720.53

C101 (50) 320.74 499.90 581.61 516.37 737.76 848.08 655.64 855.26 858.58

R101 (75) 556.63 764.63 946.44 799.89 1059.96 1077.54 995.86 1077.58 1077.58

C101 (75) 724.69 1040.92 1265.05 1031.45 1340.71 1360.47 1258.40 1360.46 1360.55

R101 (100) 761.61 1063.70 1304.01 1084.20 1435.75 1457.26 1342.67 1457.37 1457.37

C101 (100) 857.04 1297.74 1596.51 1269.90 1749.72 1809.38 1590.03 1809.83 1809.97

High Variability
R101 (25) 143.20 202.24 260.56 214.95 299.49 325.66 278.85 331.41 331.73

C101 (25) 196.03 276.49 310.91 288.84 399.60 451.03 370.62 453.58 460.01

R101 (50) 304.67 454.50 569.24 475.51 654.32 711.51 610.36 716.09 716.93

C101 (50) 300.79 479.47 564.57 494.82 707.34 812.79 638.48 836.77 855.57

R101 (75) 524.81 739.20 917.73 773.73 1037.81 1075.61 967.80 1075.58 1075.64

C101 (75) 698.91 1005.14 1217.85 1010.86 1314.33 1360.03 1225.84 1360.56 1360.58

R101 (100) 725.95 1021.28 1258.29 1057.99 1404.80 1452.70 1309.15 1452.86 1452.86

C101 (100) 827.88 1235.94 1524.59 1234.40 1673.82 1800.85 1537.64 1803.56 1806.58
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Table 19: Average Demand Served by Hybrid Rollout with Dynamic Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 150.71 220.42 277.09 231.82 318.90 331.69 300.88 332.04 332.04

C101 (25) 209.97 296.98 320.02 311.41 451.17 459.64 391.27 459.23 459.64

R101 (50) 351.08 492.56 625.36 509.52 710.39 721.15 650.54 721.14 721.15

C101 (50) 319.42 533.60 593.58 532.33 794.57 858.95 671.22 859.83 859.92

R101 (75) 584.39 795.13 978.01 826.11 1077.48 1078.42 1021.42 1078.42 1078.42

C101 (75) 750.58 1090.68 1291.73 1060.97 1359.14 1359.99 1286.41 1360.04 1360.05

R101 (100) 792.44 1105.70 1361.89 1115.07 1456.71 1458.60 1376.41 1458.60 1458.59

C101 (100) 878.25 1340.65 1636.46 1301.74 1798.40 1810.80 1638.26 1810.79 1810.84

Moderate Variability
R101 (25) 142.07 209.13 273.03 223.28 311.69 330.18 289.98 331.56 331.61

C101 (25) 208.62 288.86 318.56 297.86 420.43 456.56 381.28 458.25 459.28

R101 (50) 319.64 467.14 602.19 492.34 680.73 719.72 629.51 720.38 720.52

C101 (50) 319.72 499.99 581.72 516.41 738.50 846.99 655.35 854.57 858.61

R101 (75) 557.34 763.12 946.40 798.86 1060.11 1077.58 994.08 1077.58 1077.58

C101 (75) 724.24 1040.06 1267.57 1029.88 1340.91 1360.47 1257.51 1360.50 1360.55

R101 (100) 759.86 1064.81 1303.49 1082.38 1435.79 1457.27 1341.77 1457.37 1457.37

C101 (100) 856.57 1295.34 1595.89 1269.43 1748.48 1809.19 1588.95 1809.92 1809.97

High Variability
R101 (25) 141.80 202.23 260.24 215.45 298.42 325.77 278.77 331.35 331.73

C101 (25) 196.63 276.65 311.59 289.41 397.67 451.18 369.69 453.21 460.01

R101 (50) 304.38 454.02 566.80 475.23 654.16 711.49 609.31 716.18 716.93

C101 (50) 300.57 479.26 564.68 493.98 704.98 815.71 637.36 837.06 855.58

R101 (75) 523.82 738.55 915.75 772.87 1035.51 1075.57 967.67 1075.58 1075.64

C101 (75) 697.74 1006.92 1217.59 1010.41 1315.36 1360.00 1222.61 1360.55 1360.58

R101 (100) 724.68 1021.31 1258.87 1054.84 1404.25 1452.72 1308.61 1452.86 1452.86

C101 (100) 828.91 1234.82 1521.58 1234.33 1675.04 1800.94 1535.79 1803.91 1806.58

Table 20: Average CPU Seconds Per Instance
25 Customers 50 Customers 75 Customers 100 Customers

Method Avg. CPU Avg. CPU Avg. CPU Avg. CPU

No Decomposition
One-Step Rollout 19.01 2647.93 – –

Post-Decision Rollout 5.48 579.78 – –

Pre-Decision Rollout 0.63 5.54 56.93 480.30

Hybrid Rollout 1.32 36.81 1664.97 –

Static Decomposition
One-Step Rollout 1.52 5.15 10.79 33.06

Post-Decision Rollout 0.55 2.28 5.05 24.67

Pre-Decision Rollout 0.76 1.99 4.48 9.27

Hybrid Rollout 0.81 2.65 6.34 14.71

Dynamic Decomposition
One-Step Rollout 1.95 8.16 64.00 457.47

Post-Decision Rollout 0.89 7.42 61.72 466.23

Hybrid Rollout 0.87 7.12 58.38 485.14
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