
A Rollout Algorithm Framework for Heuristic Solutions

to Finite-Horizon Stochastic Dynamic Programs

Justin C. Goodson∗ Barrett W. Thomas† Jeffrey W. Ohlmann†

September 16, 2016

Abstract

Rollout algorithms have enjoyed success across a variety of domains as heuristic solution pro-

cedures for stochastic dynamic programs (SDPs). However, because most rollout implemen-

tations are closely tied to specific problems, the visibility of advances in rollout methods is

limited, thereby making it difficult for researchers in other fields to extract general procedures

and apply them to different areas. We present a rollout algorithm framework to make re-

cent advances in rollout methods more accessible to researchers seeking heuristic policies for

large-scale, finite-horizon SDPs. We formalize rollout variants exploiting the pre- and post-

decision state variables as a means of overcoming computational limitations imposed by large

state and action spaces. We present a unified analytical discussion, generalizing results from

the literature and introducing new results that relate the performance of the rollout variants

to one another. Relative to the literature, our policy-based approach to presenting and prov-

ing results makes a closer connection to the underpinnings of dynamic programming. Finally,

we illustrate our framework and analytical results via application to a dynamic and stochastic

multi-compartment knapsack problem.

Keywords: dynamic programming; rollout algorithm; stochastic dynamic programming; approxi-

mate dynamic programming

∗Corresponding Author; Department of Operations & Information Technology Management; John Cook School of

Business; Saint Louis University; goodson@slu.edu; 3674 Lindell Blvd. St. Louis, MO 63108; 314.977.2027
†Department of Management Sciences; Tippie College of Business; University of Iowa; barrett-

thomas@uiowa.edu; jeffrey-ohlmann@uiowa.edu

1

1 Introduction

Dynamic programs serve as a model for a variety of real-world challenges, including problems

in the management of supply and distribution networks, health care delivery, energy, financial

portfolios, and a range of other sequential decision problems. Yet, for many dynamic programs of

practical interest, the well-known curse of dimensionality creates computational issues that impede

efforts to solve the value functions and to obtain optimal policies. Hence, much research focuses

on heuristic methodologies to approximate solutions to the value functions and obtain high-quality

policies.

A fundamental challenge in approximate dynamic programming is identifying an optimal ac-

tion to be taken from a given state. In this work, we focus on action selection via rollout algorithms,

forward dynamic programming-based lookahead procedures that estimate rewards-to-go through

suboptimal policies. These estimates then guide action selection in the current state. Although

rollout algorithms may serve as sequential solution procedures for deterministic discrete optimiza-

tion problems (Bertsekas, 2013), we focus on the application of rollout algorithms to finite-horizon

stochastic dynamic programs (SDPs).

Following the initial work of Bertsekas et al. (1997), rollout algorithms applied to dynamic pro-

grams have enjoyed success across a variety of domains spanning stochastic scheduling (Bertsekas

and Castanon, 1998), revenue management (Bertsimas and Popescu, 2003), multi-dimensional

knapsack problems (Bertsimas and Demir, 2002), Steiner problems (Duin and Voß, 1999), sequen-

tial ordering (Guerriero and Mancini, 2003), multi-class task scheduling (Kim and Chang, 2003),

job-shop scheduling (Meloni et al., 2004; Guerriero, 2008), parallel machine scheduling (Ciavotta

et al., 2009; Pacciarelli et al., 2011; Ciavotta et al., 2016), and stochastic vehicle routing (Seco-

mandi, 2000, 2001; Novoa and Storer, 2008; Goodson et al., 2013, 2016). However, because most

rollout implementations are closely tied to specific problems, the visibility of advances in rollout

methods is limited, thereby making it difficult for researchers in other fields to extract general

procedures and apply them to different areas.

We present a rollout algorithm framework with the aim of making recent advances in rollout

methods more accessible to the research community, particularly to researchers seeking heuris-

tic solution methods for large-scale, finite-horizon SDPs. We make three contributions. First,

we formalize rollout algorithm variants that exploit the pre- and post-decision state variables as

a means of overcoming computational limitations imposed by large state and action spaces. In

contrast, most of the rollout literature focuses on one- and multi-step procedures that often yield

good policies for problems in which the state and action spaces are small enough to allow them

to be applied effectively. Second, we present a unified analytical discussion of rollout algorithm

2

variants, generalizing results from the literature (Propositions 1, 2, and 6) and introducing new

results that relate the performance of the rollout variants to one another (Propositions 3, 4, and

5). Additionally, we offer a new policy-based approach to presenting and proving performance

improvement properties of rollout algorithms. Relative to the literature, which relies primarily on

sample path arguments, our policy-based proofs make a stronger connection to the underpinnings

of dynamic programming. Third, we illustrate our framework and analytical results via application

to a dynamic and stochastic multi-compartment knapsack problem, demonstrating how one might

use rollout algorithms to obtain heuristic policies for a computationally challenging problem.

In §2, we establish notation and terminology for our treatment of SDPs. We present our rollout

framework in §3. Performance improvement properties are given in §4 with accompanying proofs

in the Appendix. In §5, we present an illustrative application of the rollout framework to a knapsack

problem and suggest guidelines for choosing a rollout algorithm in practice. We conclude the paper

in §6.

2 A Finite-Horizon Stochastic Dynamic Program

We consider a SDP with a finite horizon in which decisions must be made at decision epochs

0, 1, . . . , K, where K may be a random variable. The kth decision epoch marks the beginning of

the kth period at which time the system occupies state sk in state space S and at which time the

decision maker chooses an action a from the set of feasible actions A(sk). A state transition from

state sk in decision epoch k to state sk+1 in decision epoch k + 1 is a function of the selected ac-

tion a and the set of random variables Wk+1 representing the random information arriving between

decision epochs k and k + 1. We denote the state transition as sk+1 = S(sk, a,Wk+1). As dis-

cussed in Powell (2011), we split the state transition into two parts – a transition from pre-decision

state sk to post-decision state sak and a transition from sak to pre-decision state sk+1. We denote the

deterministic transition to the post-decision state by the function SA(sk, a) and the random transi-

tion to the next pre-decision state by the function SW (sak,Wk+1). Thus, sk+1 = S(sk, a,Wk+1) =

SW (SA(sk, a),Wk+1). The decision tree in Figure 1 provides a visual representation of the model

elements. Square nodes represent pre-decision states, solid arcs depict actions, round nodes are

post-decision states, and dashed arcs denote random information.

Let R̂k+1(sk, a,Wk+1) be the random reward earned at decision epoch k when selecting action

a in state sk and observing random information Wk+1. Because Wk+1 may not be realized when

selecting action a, we define the reward in decision epoch k as the expected reward Rk(sk, a) =

E[R̂k+1(sk, a,Wk+1)|sk, a], where E[·] denotes the expectation operator (in this case with respect

3

Figure 1: Stochastic Dynamic Program Depicted as a Decision Tree

to Wk+1). We define P{·|s, a} as the state transition probabilities conditioned on a given state s

and action a in A(s).

Let Π be the set of all Markovian deterministic policies. A policy π in Π is a sequence of deci-

sion rules: π = (δπ0 , δ
π
1 , . . . , δ

π
K), where each decision rule δπk (sk) : sk 7→ A(sk) is a function that

specifies the action choice when the process occupies state sk and follows policy π. In the context

of Figure 1, a policy indicates which action is to be selected at each decision node. Denoting by

∆k the set of all decision rules when the process is at decision epoch k, a policy π in Π belongs

to the space of decision rules ∆0 ×∆1 × · · · ×∆K . We seek a policy π in Π that maximizes the

total expected reward, conditional on initial state s0: E[
∑K

k=0Rk(sk, δ
π(sk))|s0]. Discounting can

be incorporated into the reward function, but we omit discount factors to simplify notation.

3 Rollout Algorithm Framework

In this section, we formalize a rollout algorithm framework that provides a structure for the use of

heuristic optimization techniques to solve stochastic dynamic programs. Presentation of the frame-

work begins in §3.1, where we define restricted policy classes, heuristics, and heuristic policies.

In §3.2, we introduce different types of decision rules that can be used in a rollout algorithm. In

§3.2.1, we present and discuss the computational challenge associated with the evaluation of the

one-step decision rule proposed in the literature. In §3.2.2 and §3.2.3, we formalize the notions

of post- and pre-decision state decision rules, respectively, both designed to mitigate the compu-

4

tational issues faced in the evaluation of the one-step decision rule. In §3.2.4, we discuss how

limitations of pre- and post-decision state decision rules may be overcome by combining the deci-

sion rules into a hybrid decision rule. Given these decision rules, we formally present the rollout

algorithm and define a rollout policy in §3.3.

3.1 Restricted Policies, Heuristics, and Heuristic Policies

In this section, we formally define the methods (heuristics) for specifying the decision rules within

a domain of a policy class. We begin in Definition 1 by defining restricted policy classes. Then, in

Definition 2, we define heuristics and heuristic policies. Definition 2 is analogous to the previous

definition of a heuristic (given by Bertsekas et al. (1997) for deterministic dynamic programs and

Secomandi (2003) for stochastic dynamic programs). The key differences are a generalization

that includes post-decision states and that we characterize a heuristic as a method that returns a

policy rather than as a method that returns a set of (sample) paths from a given state to a terminal

state. Because policies are feasible solutions to dynamic programs, we believe our policy-based

definition makes a stronger connection to the underpinnings of dynamic programming, yielding

more intuitive proofs for our analytical results. Further, as sample paths are the result of the

execution of a policy and realizations of random variables, policies may be viewed as more general.

Throughout the paper, we sometimes refer to generic states swithout an index and to a decision

epoch k. In these cases, s may be either a pre- or post-decision state. When s is a pre-decision

state, k is the decision epoch associated with s. When s is a post-decision state, the decision epoch

associated with s is k− 1. At times we also refer to a generic state s′ on a given sample path. State

s′ may also be a pre- or post-decision state.

Definition 1 (Restricted Policy Classes). Let Π be the set of deterministic Markovian policies. Let

restricted policy class Π̄ be a not necessarily strict subset of Π in which the decision rules at each

epoch k lie within the restricted set of decision rules ∆̄k ⊆ ∆k. Thus, a policy π in Π̄ is a sequence

of decision rules in ∆̄0 × ∆̄1 × · · · × ∆̄K . Let Ā(sk) = {δk(sk) : δk ∈ ∆̄k} ⊆ A(sk) be the

restricted set of feasible actions at decision epoch k when the process occupies state sk and the

decision rules at epoch k are restricted to be in ∆̄k.

In addition to restricted policy classes, Definition 1 also introduces the concept of a restricted

action set Ā(sk). We note that, as a subset of A(sk), Ā(sk) may equal A(sk).

Definition 2 (Heuristics and Heuristic Policies). Let s be a (pre- or post-decision) state in state

space S. A heuristic H(s) is any method to select decision rules in epochs k, k + 1, . . . , K within

the space of restricted decision rules ∆̄k × ∆̄k+1 × · · · × ∆̄K . The resulting heuristic policy,

5

denoted πH(s), is the sequence of these decision rules: πH(s) = (δ
πH(s)

k , δ
πH(s)

k+1 , . . . , δ
πH(s)

K). Due to

the restrictions imposed on the decision rules, policy πH(·) prescribes actions in restricted action

space Ā(·).

Definitions 1 and 2 make a distinction between a heuristic and a heuristic policy. The heuristic

can be a simple rule, a search method, or a mathematical program that is used to establish a

heuristic policy. Indeed, there is not a one-to-one mapping from a heuristic to a heuristic policy.

A method to select policies need not be tied to a particular policy or even to a particular class

of policies. This distinction allows us to differentiate the computation time required to find the

heuristic policy from the heuristic policy itself. It is the computation time of the heuristic that

motivates the discussion of the post-decision state and hybrid decision rules in §3.2. Further, as

demonstrated in Goodson et al. (2016), the choice of heuristic and the subsequent quality of the

policy it returns can affect the quality of the rollout policy.

Definitions 1 and 2 generalize the concept of heuristic policies as they are best known in the

rollout literature. Notably, some of the rollout literature refers to a “base policy” (see for example

Bertsekas (2005a)). Base policies are suboptimal policies defined prior to the problem horizon. To

“roll out” a base policy in future epochs, the policy must define a sequence of feasible decision

rules from any given initial state (Bertsekas, 2005a). This feasibility is often achieved by modifying

the base policy with recourse to account for states already visited or actions already executed (for

example, see Secomandi (2001)). Our concepts of heuristics and heuristic policies are compatible

with the notion of base policies applied in rollout algorithms in that the heuristic can be viewed as

the recourse rule paired with a base policy to generate the resulting heuristic policy. In addition

to base policies, Definitions 1 and 2 also cover the case in which, through the use of a heuristic,

we update the heuristic policy at each decision epoch. Thus, instead of using recourse to modify a

given base policy at each decision epoch, we allow for a heuristic that searches a given restricted

policy class for an updated heuristic policy.

We illustrate Definitions 1 and 2 with a set of examples. Consider a basic job shop scheduling

problem, where a set of jobs must be assigned to resources at particular times such that a given

objective is optimized, e.g., minimize the makespan. The set of all non-preemptive scheduling

policies is a restricted policy class. The set of restricted decision rules for non-preemptive policies

does not include a decision rule that interrupts the processing of a job and then schedules it to

continue processing at a later time. Thus, the restricted action space includes all feasible actions

except those that preempt in-process jobs. A procedure to search the space of non-preemptive

scheduling policies constitutes a heuristic. Examples of heuristics for scheduling are given in

Pranzo et al. (2003) and Meloni et al. (2004).

6

As a second example, consider the work of Goodson et al. (2013) that develops rollout policies

to obtain dynamic policies for a vehicle routing problem with stochastic demand. In their work,

the restricted policy class is a class of fixed-route policies. A fixed-route policy requires vehicles

to visit customers in the order they appear in a pre-specified sequence of customers. The restricted

action space is composed of the actions resulting from the application of all possible fixed-route

policies at a given decision epoch. The fixed-route local search procedure of Goodson et al. (2013),

combined with their fixed-route policy class, constitutes a heuristic.

Secomandi (2008) introduces the concept of a control algorithm, formally defined as the pair-

ing of a mathematical program and control-policy class to approximate the solution to a SDP. For

a revenue management problem, one of the approaches Secomandi (2008) considers is restricting

attention to the class of booking-limit policies, which are characterized by a single parameter called

the booking limit. Requests for a product are accepted up to and including the booking limit, pro-

vided there is sufficient product to fill the request. Product requests beyond the booking limit are

rejected. Secomandi (2008) establishes the booking limit for each product at all future decision

epochs by solving a mathematical program. The instantiated booking limits serve as a policy.

Control algorithms are compatible with our coupled definitions of a restricted policy class

and heuristic. Control algorithms operate on restricted policy classes and specify policy selection

from these classes via mathematical programming, usually via the selection of a parameter in a

threshold-like decision rule. Our definition of a heuristic does not specify a representation or

solution method, only that it selects a policy from a restricted policy class. Thus, control algorithms

and their use of mathematical programs fit our definition of a heuristic. Further, control algorithms

may serve as heuristics to obtain the decision rules presented in §3.2.1-§3.2.4.

Finally, we note that, in Definitions 1 and 2 as well as in the rest of this paper, we focus on

heuristics that specify decision rules from a current epoch k to a terminal epoch K. In general,

however, a heuristic can be applied to specify decision rules in epochs k, k + 1, . . . , k +H , where

H is some horizon H ≤ K − k. The use of the truncated horizon is natural in rollout methods ap-

plied to infinite-horizon problems, which are often solved via rolling-horizon methods. As another

example, in model predictive control, an action is identified at a given decision epoch by solving

a control problem, often a deterministic approximation of the stochastic system. The solution to

the control problem identifies a feasible action in the current period, but not necessarily all future

periods. From the perspective of our rollout algorithm framework, model predictive control may

be viewed as a limited-horizon heuristic. Bertsekas (2005b) presents a more in-depth study of con-

nections between model predictive control and rollout algorithms. Further, as we illustrate in §5.2,

methods to identify feasible actions may be used in sequence to form a full policy through the final

decision epoch. Further, we note that, while in practice decision rules may be drawn from different

7

restricted policy classes at each epoch, the performance improvement properties in §4 assume the

policy class remains the same throughout the execution of the algorithm.

3.2 Heuristic Decision Rules for Rollout Algorithms

Rollout algorithms step forward in time. Thus, unlike with traditional backward programming, it

is necessary to estimate the reward-to-go when evaluating decision rules. In rollout algorithms,

these estimates are generated by looking ahead from certain states and then applying a heuristic to

generate a heuristic policy. The algorithm evaluates these heuristic policies to generate an estimate

for the reward-to-go. In this section, we present decision rules, differentiated by their degree of

lookahead, that will be evaluated and used to generate rollout policies in the subsequently presented

rollout algorithm.

In the following sections, we discuss one-step, post-decision state, pre-decision state, and hy-

brid decision rules. We note a rollout algorithm typically does not directly use the actions pre-

scribed by the heuristic policy, but rather uses the heuristic policies as means for approximating

the value function and evaluating candidate actions at the current state. As noted in Chang et al.

(2013, p. 197), “. . . what we are really interested in is the ranking of actions, not the degree of

approximation. Therefore, as long as the [approximation] preserves the true ranking of actions

well, the resulting policy will perform fairly well.” As we will discuss, two of these decision rules

incorporate heuristic policies as a means of approximating value functions and two of the decision

rules use the heuristic policy directly to specify an action in the current state. Although we focus

on looking no further than one step into the future, it is possible to look ahead arbitrarily far into

the horizon, although such multi-step lookahead is often too computationally prohibitive.

3.2.1 One-Step Decision Rules

In the literature, most rollout algorithms use a decision rule that looks ahead one step and generates

heuristic policies at each possible future state to approximate the reward-to-go. This one-step

rollout is closely related to the pilot method of Voß et al. (2005). In this section, we formalize

one-step decision rules for use in the rollout algorithm.

Let S(sk, a) = {sk+1 : P{sk+1|sk, a} > 0} be the set of reachable states when the process

occupies state sk and action a is selected. From each state sk+1 in S(sk, a), the one-step decision

rule executes a heuristic to obtain a policy πH(sk+1). That is, we have a heuristic policy for each

sk+1 in S(sk, a) with each sk+1 as an initial state for its respective heuristic policy. The generation

of these policies is shown in Figure 2a, which depicts heuristic H(·) being applied to each of the

8

a. One-Step Decision Rule b. Post-Decision State Decision Rule

d. Hybrid Decision Rule c. Pre-Decision State Decision Rule

Figure 2: Rollout Algorithm Framework

six possible states at the next decision epoch k + 1, thus resulting in six heuristic policies, one for

each sk+1.

In the one-step decision rule, the estimate of the reward-to-go when selecting action a in state sk
is given by the expected reward-to-go of the heuristic policies obtained in all possible states sk+1:

E[
∑K

i=k+1 Ri(si, δ
πH(sk+1)

i)|sk] =
∑

sk+1∈S(sk,a) E[
∑K

i=k+1 Ri(si, δ
πH(sk+1)

i)|sk+1] × P{sk+1|sk, a}.
The one-step decision rule selects an action a in feasible action setA(sk) that maximizes the value

of Rk(sk, a) + E[
∑K

i=k+1 Ri(si, δ
H(sk+1)
i)|sk]. Definition 3 formalizes the decision rule employed

by one-step rollout policies.

Definition 3 (One-Step Decision Rule). At decision epoch k when the process occupies state sk,

the one-step decision rule δπone
k (sk) maps sk to an element in the set

arg max
a∈A(sk)

{
Rk(sk, a) + E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)
i (si)

) ∣∣∣∣sk
]}

. (1)

Algorithm 1 illustrates the steps required to evaluate (1) and return an action. In Algorithm

1, the variables λ and η are local variables that facilitate calculation. The loop beginning on line

2 iterates through the feasible action set. The current-period reward is calculated on line 3. The

9

loop beginning on line 4 iterates through the set of reachable states. Line 5 executes the heuristic

and line 6 updates the expected value of following the heuristic policy from decision epoch k + 1

onward. The logic beginning on line 7 tracks the best action. The best action is returned on line 10

to be used in the rollout policies discussed in §3.3.

When expected values are difficult to compute via exact methods, simulation may be used to

estimate the expected current-period reward on line 3 and the heuristic policy’s expected reward-

to-go on line 6. The simulation procedure in Bertsekas and Tsitsiklis (1996, chap. 5.2) may be

applied to estimate policy values for the one-step decision rule and for the decision rules we discuss

below.

Algorithm 1 Evaluating the One-Step Decision Rule
1: λ← −∞
2: for a ∈ A(sk) do
3: η ← Rk(sk, a)

4: for sk+1 ∈ S(sk, a) do
5: executeH(sk+1) to obtain πH(sk+1)

6: η ← η + E
[∑K

i=k+1Ri(si, δ
πH(sk+1)

i (si))|sk+1

]
× P {sk+1|sk, a}

7: if η > λ then
8: λ← η

9: a? ← a

10: Return a?

Algorithm 1 highlights the computational burden of evaluating a one-step decision rule. Specif-

ically, evaluating the one-step decision rule requires
∑

a∈A(sk) |S(sk, a)| applications of heuristic

H(·). As |A(sk)| and |S(sk, a)| increase, evaluating (1) becomes a computational challenge even

when heuristicH(·) is a simple procedure.

3.2.2 Post-Decision State Decision Rules

Several methods have been suggested for mitigating the computational burden of evaluating the

one-step decision rule including restricting the action space (Guerriero et al., 2002) and paral-

lelization (Guerriero and Mancini, 2003, 2005; Kim and Chang, 2003). In this subsection, we

introduce an alternate approach that leverages the notion of the post-decision state. This paper is

the first to explicitly state and analyze this decision rule and the rollout policy that results from its

use.

The key computational difference between the one-step and post-decision state decision rules

10

is that we identify a single heuristic policy at each post-decision state rather than a heuristic policy

at all possible pre-decision states in the subsequent epoch. Figure 2b depicts a post-decision state

decision rule, where heuristicH(·) is applied in each of three post-decision states. A post-decision

state decision rule can be viewed as taking a “half-step” from the current state sk to a post-decision

state sak in comparison to a one-step decision rule that looks ahead a full step from the current state

sk to each possible future state sk+1. Definition 4 formalizes the post-decision state decision rule.

Definition 4 (Post-Decision State Decision Rule). At decision epoch k when the process occupies

state sk, the post-decision state decision rule δπpost
k (sk) maps sk to an element in the set

arg max
a∈A(sk)

{
Rk(sk, a) + E

[
K∑

i=k+1

Ri

(
si, δ

π
H(sa

k)
i (si)

) ∣∣∣∣sk
]}

. (2)

Algorithm 2 illustrates the steps required to evaluate (2) and return an action. Line 2 iterates

through the set of feasible actions. Line 3 executes the heuristic from post-decision state sak and

line 4 calculates the value of the current-period reward plus the expected future reward of following

policy πH(sak) from decision epoch k + 1 onward. The logic beginning on line 5 of Algorithm 2

tracks the best action, which is returned on line 8.

A comparison of Algorithms 1 and 2 reveals that the evaluation of the post-decision state de-

cision rule executes a heuristic |A(sk)| times, which is potentially many fewer times than the∑
a∈A(sk) |S(sk, a)| executions required by the one-step decision rule. The complexity of evalu-

ating the one-step decision rule depends on the size of both the state and action spaces whereas

the complexity of evaluating the post-decision state decision rule depends only on the size of the

action space.

Algorithm 2 Evaluating the Post-Decision State Decision Rule
1: λ← −∞
2: for a ∈ A(sk) do
3: executeH(sak) to obtain πH(sak)

4: η ← Rk(sk, a) + E
[∑K

i=k+1Ri(si, δ
πH(sa

k
)

i (si))|sk
]

5: if η > λ then
6: λ← η

7: a? ← a

8: Return a?

While flavors of post-decision state decision rules appear in the literature, only Goodson et al.

(2013) explicitly acknowledges the post-decision state decision rule and post-decision rollout. To

11

offer the reader examples of post-decision state decision rules in practice as well as to help unify

the literature, we highlight three papers from the literature. In the development of a rollout policy

for a vehicle routing problem with stochastic demand, Secomandi (2001) makes use of a post-

decision state decision rule without explicit mention. The use of a post-decision decision rule is

evident in the stated complexity of the rollout approach (see Theorem 1, the proof which is found in

Proposition 26 of Secomandi (1998)). Definition 4 generalizes this problem- and heuristic-specific

technique to general SDPs.

The branch-and-regret procedure applied in Hvattum et al. (2007) also implicitly employs a

post-decision state decision rule. Hvattum et al. (2007) address a vehicle routing problem with

stochastic demand where some customer requests arrive randomly over a given time horizon. At

pre-defined time intervals, a procedure is executed to update the routing policy. Part of the pro-

cedure determines whether or not certain customer requests will be serviced in the current time

period, or in a later time period. These choices are evaluated by making transitions to the corre-

sponding post-decision states, a process the authors refer to as branching.

Goodson et al. (2013) present a post-decision state decision rule in the context of a vehicle

routing problem with stochastic demand and duration limits. This paper generalizes that presenta-

tion. Goodson et al. (2013) demonstrates that using post-decision state decision rules is effective

and offers some computational benefits. However, such decision rules can still be challenging to

evaluate for dynamic programs with large action spaces. For example, Goodson et al. (2013) find

even for moderately-sized vehicle routing problem instances (e.g., 50 customers and several vehi-

cles), the number of feasible actions at a decision epoch may range from several hundred to several

million. As the number of feasible actions grows, executing even simple heuristics once for each

action becomes computationally prohibitive.

3.2.3 Pre-Decision State Decision Rules

Motivated by the potential computational issues associated with applying a post-decision state de-

cision rule, we formalize a pre-decision state decision rule that executes heuristic H(·) only once

from the current, pre-decision state. The pre-decision state decision rule can be viewed as looking

ahead “zero-steps” in contrast to the one-step lookahead of one-step rollout and half-step looka-

head of post-decision state rollout. Although a rollout algorithm employing the pre-decision state

decision rule falls outside the traditional view of rollout algorithms as lookahead procedures, the

definition of a pre-decision state decision rule provides completeness of the performance improve-

ment properties presented in Section 4. Further, our final decision rule, the hybrid decision rule,

requires the formalization of a pre-decision state decision rule.

12

In contrast to the previously presented decision rules, the pre-decision state decision rule does

not make use of the re-application of a heuristic to approximate the reward-to-go from reachable

future states. Rather, the action selected at decision epoch k is the action prescribed by policy

πH(sk). Figure 2c depicts a pre-decision rollout decision rule where heuristicH(·) is executed only

once in pre-decision state sk. Definition 5 formalizes the decision rule and Algorithm 3 illustrates

the steps required to evaluate (3). Line 1 of Algorithm 3 executes the heuristic from the current,

pre-decision state, and line 2 returns the action prescribed by the heuristic policy.

Definition 5 (Pre-Decision State Decision Rule). At decision epoch k when the process occupies

state sk, the pre-decision state decision rule is:

δ
πpre
k (sk) = δ

πH(sk)

k (sk). (3)

Algorithm 3 Evaluating the Pre-Decision State Decision Rule
1: executeH(sk) to obtain πH(sk)

2: a? ← δ
πH(sk)

k (sk)

The notion of a pre-decision state decision rule implicitly arises in rolling-horizon procedures

that involve a single re-solving execution of a mathematical program or metaheuristic to select

an action from the current state. As an example, for a vehicle routing problem with stochastic

demand, Novoa and Storer (2008) implicitly implement a pre-decision state decision rule in the

method they call “n2reopt.” At each decision epoch, the method returns an updated policy via a

single execution of a heuristic from the pre-decision state. Additional examples from the routing

literature can be found in Goodson et al. (2013) and Goodson et al. (2016). The control-algorithm

method of Secomandi (2008) is compatible with our definition of a pre-decision state decision

rule. At each state, this control-algorithm implementation uses a single execution of the control-

algorithm heuristic to update the parameters associated with a threshold-like decision rule.

3.2.4 Hybrid Decision Rules

In this section, we introduce a hybrid decision rule that combines pre- and post-decision state

decision rules. Although pre-decision state decision rules provide a computational advantage over

post-decision state decision rules, because the heuristic policy is usually a member of a restricted

policy class, by definition certain actions may not available to the heuristic policy. While one-step

and post-decision state decision rules overcome this limitation by their design, the pre-decision

rule may never consider some actions or may mis-evaluate the value of some actions. The aim of

13

a hybrid decision rule is to reduce the computational burden of (2) while yielding a better decision

rule than (3).

The hybrid decision rule limits the number of post-decision states from which the heuristic

is executed. The basic premise of the hybrid decision rule is that a single heuristic execution

from the current pre-decision state sk can be used to implicitly evaluate a subset of the action

space, the restricted action set Ā(sk) ⊆ A(sk). Then, specific actions are identified and evaluated

by applying the heuristic from the respective post-decision states to estimate the rewards-to-go.

This is in contrast to one-step and post-decision state decision rules that explicitly evaluate each

feasible action by executing the heuristic from the resulting pre- or post-decision states to estimate

the respective rewards-to-go.

The first step in evaluating the hybrid decision rule is to evaluate the pre-decision state de-

cision rule by executing the heuristic from the current state. Denote the action returned by the

pre-decision state decision rule at decision epoch k when the process occupies state sk by āk =

δ
πH(sk)

k (sk) . By Definition 2, āk is in restricted action set Ā(sk) because heuristic H(·) operates

on the restricted policy class Π̄.

The hybrid decision rule then evaluates, from the post-decision state, actions in Ǎ(sk) ⊆{
A(sk) \ Ā(sk)

}
, a subset of feasible actions not included in the restricted action set. The hy-

brid decision rule also evaluates from the post-decision state the actions belonging to Â(sk), a

select subset of actions belonging to the restricted action space Ā(sk). The set Â(·) contains ac-

tions deemed by the decision maker to warrant more careful evaluation from the post-decision state

and this choice is problem-dependent. For the performance improvement properties in §4 to hold,

āk must be an element of Â(sk). Definition 6 formalizes the hybrid decision rule.

Definition 6 (Hybrid Decision Rule). Let āk = δ
πH(sk)

k (sk) be the action prescribed by policy

πH(sk) at decision epoch k when the process occupies state sk. Let Ā(sk) be the restricted action

set as defined by Definition 1. Let Â(sk) ⊆ Ā(sk) be a chosen subset of the restricted action set

containing at least āk and Ǎ(sk) ⊆
{
A(sk) \ Ā(sk)

}
be a chosen subset of actions not included in

the restricted action set. Then, the hybrid decision rule δπhy
k (sk) maps sk to an element in the set:

arg max
a∈{Ǎ(sk)∪Â(sk)}

{
Rk(sk, a) + E

[
K∑

i=k+1

Ri

(
si, δ

π
H(sa

k)
i (si)

) ∣∣∣∣sk
]}

. (4)

Algorithm 4 illustrates the steps required to evaluate (4) and return an action. Line 2 executes

the heuristic from pre-decision state sk, then line 3 uses the resulting policy to obtain action āk.

Line 4 iterates through the actions in Ǎ(sk) ∪ Â(sk). Line 5 executes the heuristic from the post-

decision state and line 6 calculates the value of the current-period reward plus the expected future

14

reward of following policy πH(sak) from decision epoch k+1 onward. The logic beginning on line 7

of Algorithm 4 tracks the best action, which is returned on line 10.

Algorithm 4 Evaluating the Hybrid Decision Rule
1: λ← −∞
2: executeH(sk) to obtain πH(sk)

3: āk ← δ
πH(sk)

k (sk)

4: for a ∈ {Ǎ(sk) ∪ Â(sk)} do
5: executeH(sak) to obtain πH(sak)

6: η ← Rk(sk, a) + E
[∑K

i=k+1Ri(si, δ
πH(sa

k
)

i (si))|sk
]

7: if η > λ then
8: λ← η

9: a? ← a

10: Return a?

Figure 2d depicts a hybrid decision rule. The two gray arcs represent actions belonging to re-

stricted action space Ā(sk) and the black arc represents a single action comprising Ǎ(sk). Heuris-

tic H(·) is executed once from pre-decision state sk, yielding action āk. In this small example,

Â(sk) = {āk}. Then, we execute heuristic H(·) from the post-decision state corresponding to the

single action composing Ǎ(sk) and from the post-decision state corresponding to the single action

āk composing Â(sk).

Goodson et al. (2013) develop a rollout algorithm using the hybrid decision rule for a vehicle

routing problem with stochastic demand. In their work, the set Ǎ(sk) consists of all actions that

simultaneously replenish the capacity of all vehicles before capacity is depleted. Recognizing that

some preemptive capacity replenishment actions belonging to Ā(·) are often evaluated inaccurately

by pre-decision decision rules, Goodson et al. (2013) include such actions in Â(·). Goodson et al.

(2013) find the use of a hybrid decision rule facilitates real-time execution on problems 50 percent

larger than those amenable to real-time execution when employing a post-decision decision rule. In

general, the hybrid decision rules executes a heuristic 1 + |Ǎ(sk)∪Â(sk)| times, which depending

on the specification of Ǎ(sk) and Â(sk) can dramatically reduce the computational expense relative

to one-step and post-decision state decision rules.

3.3 Rollout Algorithm and Rollout Policy

In this section, we present the rollout algorithm and define rollout policies. The rollout algorithm

using a one-step decision rule is given in Algorithm 5. As Algorithm 5 illustrates, a rollout algo-

15

rithm is an online forward dynamic programming procedure that selects actions for realized states

in real time by employing a lookahead decision rule like those described in §3.2.

Line 1 of Algorithm 5 initializes the state variable and line 2 iterates the subsequent steps

until a terminal state is reached. Line 3 evaluates the one-step decision returning an action a?

for the current state. Line 4 records the rollout decision rule for epoch k by mapping state sk to

the chosen action. Lines 5 and 6 transition to the next state and decision epoch. We note that

rollout algorithms are executed in real time and hence wk+1 represents the exogenous information

that is learned between epochs k and k + 1. To employ post-decision, pre-decision, and hybrid

decision rules in the algorithm, we replace δπone
k (sk) in line 3 with δπpost

k (sk), δ
πpre
k (sk), and δπhy

k (sk),

respectively.

Algorithm 5 Rollout Algorithm
1: Initialize current state, k ← 0 and sk ← s0

2: while sk is not a terminal state do
3: Evaluate δπone

k (sk) returning a?

4: δπrollout
k (sk)← a?

5: sk+1 ← S (sk, δ
πrollout
k (sk), wk+1)

6: k ← k + 1

The iterative evaluation of the chosen decision rule results in a rollout policy πrollout, which we

formalize in Definition 7.

Definition 7 (Rollout Policies). A rollout policy πrollout = (δπrollout
0 , δπrollout

1 . . . , δπrollout
K) is a sequence

of decision rules where each decision rule δπrollout
k is given by step 4 of Algorithm 5.

As Algorithm 5 implies, a rollout policy evaluates decision rules only for realized states. We call

the rollout algorithm that uses the one-step decision rule the one-step rollout algorithm. Anal-

ogously, we call the rollout algorithm using post-decision state, pre-decision state, and hybrid

decision rules post-decision, pre-decision, and hybrid rollout algorithms, respectively.

4 Performance Improvement Properties

Generally speaking, the primary contribution of post-decision, pre-decision, and hybrid rollout

policies is a reduction in computation over one-step rollout policies. Unless special structure is im-

posed on heuristicH(·), we must rely on experimentation to compare the performance of different

types of rollout policies for a given problem. In this section, we outline performance improvement

properties for rollout policies by discussing methods to achieve the rollout improvement property,

16

which we state in Definition 8. A rollout policy that is rollout improving does not degrade the per-

formance of the heuristic policy. Although the results throughout this section require exact values

for expected rewards-to-go, the computational work in §5 suggests the results hold when estimat-

ing values via simulation. Our definition of the rollout improvement property specifies a sum from

the current epoch k to the end of the horizon K. Here and throughout the remainder of the paper,

we assume all heuristic policies specify decision rules through the end of the horizon as well.

Definition 8 (Rollout Improvement Property). For heuristic H(·) and a rollout policy π, we say π

is rollout improving if for k = 0, 1, . . . , K,

E

[
K∑
i=k

Ri

(
si, δ

πH(sk)

i (si)
) ∣∣∣∣sk

]
≤ E

[
K∑
i=k

Ri (si, δ
π
i (si))

∣∣∣∣sk
]
. (5)

In §4.1, we show sequentially improving heuristics lead to rollout policies that are rollout im-

proving. In §4.2, we discuss sequentially consistent heuristics, a class of sequentially improving

heuristics. In §4.3, we show how to achieve the rollout improvement property with rollout policies

based on any heuristic. Proofs for our results can be found in the Appendix.

4.1 Sequentially Improving Heuristics

Definition 9 defines a sequentially improving heuristic, a concept first introduced by Bertsekas

et al. (1997) for deterministic dynamic programming problems and restated for control algorithms

by Secomandi (2008). Definition 9 generalizes the concept for general SDPs. In the definition, we

refer to a state s′ on the sample path induced by a heuristic policy πH(s), implying s′ belongs to

one of the potential state trajectories obtained by selecting actions via πH(s).

Definition 9 (Sequentially Improving Heuristics). Let s be a (pre- or post-decision) state in state

space S and let s′ be a state such that it is on a sample path induced by policy πH(s). Then, a

heuristicH(·) is sequentially improving if, for all s and subsequent s′,

E

[
K∑
i=k

Ri

(
si, δ

πH(s)

i (si)
) ∣∣∣∣s′

]
≤ E

[
K∑
i=k

Ri

(
si, δ

πH(s′)
i (si)

) ∣∣∣∣s′
]
. (6)

Proposition 1 shows rollout policies based on sequentially improving heuristics are rollout

improving. Bertsekas et al. (1997) demonstrate an analogous result for one-step rollout applied to

deterministic dynamic programs.

Proposition 1 (Sequential Improvement Implies Rollout Improvement). If a heuristic is sequen-

tially improving, then rollout policies πone, πpost, πpre, and πhy based on that heuristic are rollout

improving.

17

4.2 Sequentially Consistent Heuristics

Bertsekas et al. (1997) introduce sequentially consistent heuristics in discussing rollout algorithms

for deterministic dynamic programs. Secomandi (2003) extends the concept of sequential consis-

tency of one-step rollout to SDPs. In our rollout framework, a sequentially consistent heuristic is

characterized by the sequence of decision rules generated when the heuristic is executed in a state

s and again in a state s′ lying on a sample path generated by policy πH(s). If the decision rules are

equivalent, then the heuristic is sequentially consistent. We formalize this concept in Definition

10. Examples of sequentially consistent heuristics for deterministic and stochastic problems can

be found in Bertsekas et al. (1997) and Secomandi (2003), respectively.

Definition 10 (Sequentially Consistent Heuristics). Let s be a (pre- or post-decision) state in state

space S and let s′ be a state such that it is on a sample path induced by policy πH(s). HeuristicH(·)
is sequentially consistent if for all s and subsequent s′,

(
δ
πH(s)

k , δ
πH(s)

k+1 , . . . , δ
πH(s)

K

)
=
(
δ
πH(s′)
k , δ

πH(s′)
k+1 , . . . , δ

πH(s′)
K

)
. (7)

Definition 10 frames sequential consistency in terms of decision rules, whereas Bertsekas et al.

(1997) and Secomandi (2003) define sequential consistency on sample paths. The two definitions

may be viewed as equivalent, but we choose to use decision rules because we define a heuristic as a

mechanism to select decision rules and because policies (sequences of decision rules) are feasible

solutions to dynamic programs.

In Proposition 2, we show a sequentially consistent heuristic is also sequentially improving.

Thus, by Proposition 1, one-step, post-decision, pre-decision, and hybrid rollout policies based

on a sequentially consistent heuristic are rollout improving. Bertsekas et al. (1997) show an anal-

ogous result for sequentially consistent heuristics and one-step rollout applied to deterministic

dynamic programs. Because Proposition 2 applies to SDPs and a broader class of rollout policies,

it generalizes Bertsekas et al. (1997). Secomandi (2003) shows one-step rollout policies based

on sequentially consistent heuristics are rollout improving for general SDPs, but does not show

sequential consistency implies sequential improvement. For a definition of sequential consistency

modified for control algorithms, Secomandi (2008) demonstrates that, when coupled with addi-

tional properties, sequentially consistent control algorithms are sequentially improving.

Proposition 2 (Sequential Consistency Implies Sequential Improvement). If a heuristic is sequen-

tially consistent, then it is also sequentially improving.

By the definition of a sequentially consistent heuristic, it is straightforward to show Proposition

1 holds at equality for a pre-decision rollout policy based on a sequentially consistent heuristic. We

18

formalize this result in Proposition 3, which implies there is no value in re-executing the heuristic

at future decision epochs in a pre-decision rollout algorithm because the heuristic policy will not

deviate from the policy induced by executing the heuristic in initial state s0.

Proposition 3 (Sequentially Consistent Pre-Decision Rollout). If heuristic H(·) is sequentially

consistent, then (5) holds at equality, thereby implying

E

[
K∑
i=0

Ri

(
si, δ

πH(s0)

i (si)
) ∣∣∣∣s0

]
= E

[
K∑
i=0

Ri

(
si, δ

πpre
i (si)

) ∣∣∣∣s0

]
. (8)

In Proposition 4, we demonstrate one-step, post-decision, and hybrid rollout policies built on

a sequentially consistent heuristic perform no worse than a pre-decision rollout policy built on the

same heuristic. For a vehicle routing problem with stochastic demand, the computational exper-

iments of Secomandi (2001) and Novoa and Storer (2008) demonstrate one-step and multi-step

lookahead rollout policies, built on the sequentially consistent cyclic heuristic of Bertsimas et al.

(1995), perform much better than the “base heuristic,” i.e., following the policy given by executing

the heuristic in the initial state. By Proposition 3, the “base heuristics” of Secomandi (2001) and

Novoa and Storer (2008) are equivalent to a pre-decision rollout policy. Thus, although Proposi-

tion 4 states only weak improvement, these computational experiments suggest the performance of

pre-decision rollout, built on a sequentially consistent heuristic, can be significantly improved by

considering other types of rollout policies.

Proposition 4 (Weak Improvement Over Pre-Decision Rollout). If heuristic H(·) is sequentially

consistent, then

E

[
K∑
i=0

Ri

(
si, δ

πpre
i (si)

) ∣∣∣∣s0

]
≤ E

[
K∑
i=0

Ri (si, δ
πone
i (si))

∣∣∣∣s0

]
, (9)

E

[
K∑
i=0

Ri

(
si, δ

πpre
i (si)

) ∣∣∣∣s0

]
≤ E

[
K∑
i=0

Ri

(
si, δ

πpost
i (si)

) ∣∣∣∣s0

]
, (10)

and

E

[
K∑
i=0

Ri

(
si, δ

πpre
i (si)

) ∣∣∣∣s0

]
≤ E

[
K∑
i=0

Ri

(
si, δ

πhy
i (si)

) ∣∣∣∣s0

]
. (11)

Further, one-step and post-decision rollout policies built on the same sequentially consistent

heuristic yield the same expected rewards. Additionally, if each rollout policy employs the same

rule for breaking ties among actions with equivalent evaluations, then one-step and post-decision

rollout decision rules are equivalent. We state this new result in Proposition 5. Computationally,

19

the result is notable because post-decision state decision rules significantly reduce the number of

times a heuristic must be executed to select an action. As noted in §3.2.2, the approach in Seco-

mandi (2001) implicitly leverages this fact for a vehicle routing problem with stochastic demand.

Proposition 5 explicitly recognizes this behavior and extends the concept to general SDPs. Seco-

mandi (2000) and Novoa and Storer (2008) implicitly exploit the same property in their work on

vehicle routing problems with stochastic demand.

Proposition 5 (Sequentially Consistent One-Step and Post-Decision Rollout). If heuristic H(·) is

sequentially consistent, and if policies πone and πpost employ the same rule for breaking ties among

actions with equivalent evaluations, then for k = 0, 1, . . . , K,

E

[
K∑
i=k

Ri (si, δ
πone
i (si))

∣∣∣∣sk
]

= E

[
K∑
i=k

Ri

(
si, δ

πpost
i (si)

) ∣∣∣∣sk
]
. (12)

Further, δπone
k = δ

πpost
k .

4.3 Fortified Rollout

It can be challenging to identify heuristics that achieve the rollout improvement property. In this

section, we discuss how to obtain the rollout improvement property with any heuristic. The idea is

straightforward: given an in-hand policy πbest, select an action via the in-hand policy or the rollout

policy, whichever attains the larger expected reward, and then update πbest accordingly. The idea

extends to general SDPs the concept of a fortified rollout algorithm, first introduced by Bertsekas

et al. (1997) for deterministic dynamic programs.

Definition 11 states the decision rule employed by fortified one-step rollout policy πf-one. Propo-

sition 6 introduces a new result that states policy πf-one is rollout improving with respect to the

in-hand policy, which may be initialized via πH(·).

Definition 11 (Fortified One-Step Rollout). Let πbest be an in-hand policy. At decision epoch k,

when the process occupies state sk fortified one-step rollout policy πf-one employs the following

decision rule:

20

δπf-one
k (sk) =



δπbest
k (sk), E

[
K∑
i=k

Ri (si, δ
πbest
i (si))

∣∣∣∣sk
]

≥ max
a∈A(sk)

{
Rk(sk, a) + E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)

i (si)
) ∣∣∣∣sk

]}
,

δπone
k (sk), otherwise.

(13)

Policy πbest is set to

πbest =



πbest, E

[
K∑
i=k

Ri (si, δ
πbest
i (si))

∣∣∣∣sk
]

≥ max
a∈A(sk)

{
Rk(sk, a) + E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)

i (si)
) ∣∣∣∣sk

]}
,

πH(sk+1), otherwise.

(14)

In the second case where πbest is set to πH(sk+1), state sk+1 equals S(sk, a
?, wk+1) with a? being the

action returned by one-step rollout and wk+1 the realization of Wk+1. This update of πbest occurs

when state sk+1 is realized.

Proposition 6 (Fortified Rollout is Sequentially Improving). Given an in-hand policy πbest, for

k = 0, 1, . . . , K,

E

[
K∑
i=k

Ri (si, δ
πbest
i (si))

∣∣∣∣sk
]
≤ E

[
K∑
i=k

Ri (si, δ
πf-one
i (si))

∣∣∣∣sk
]
. (15)

The concept of fortified rollout can be extended to post-decision, hybrid, and pre-decision roll-

out. The definitions and proofs are analogous to those of Definition 11 and Proposition 6. As an

example of fortification, Goodson et al. (2013) apply the various rollout variants to a vehicle rout-

ing problem with stochastic demand. Goodson et al. (2013) fortify a non-sequentially consistent

heuristic to generate rollout policies with the rollout improvement property. Although Goodson

et al. (2013) found fortification necessary to achieve rollout improvement, whether or not fortifi-

cation is required depends on the problem. Regardless, if the additional computational effort to

evaluate πbest once at each decision epoch is not prohibitive, then fortification guarantees rollout

improvement.

21

5 Application of Rollout Framework

To illustrate the rollout algorithm variants, we formulate a dynamic and stochastic multi-compartment

knapsack problem (DSMKP) as a stochastic dynamic program and apply our framework. The

DSMKP is a multi-dimensional variant of the problem presented in Papastavrou et al. (1996). We

formulate the problem in §5.1, discuss the heuristic in §5.2, and present computational results in

§5.3.

5.1 DSMKP Formulation

The objective of the DSMKP is to pack a knapsack with items presented over a finite time horizon

such that total expected reward is maximized subject to constraints on compartmental capacities

and overall knapsack capacity. At each decision epoch, the decision maker is presented with a

random set of items, any subset of which may be considered for potential inclusion in the knap-

sack. Although multiple items may be presented simultaneously, we assume at most one item is

available to each compartment at each epoch. Compartment capacities, item sizes, and the reward

for including a given subset of items in the knapsack are fixed and known. However, prior to the

presentation of items, the set of items available at an epoch is known only in distribution.

The state of the system captures all information required to accept or reject items at decision

epoch k and includes remaining compartment capacities, remaining overall capacity, and the subset

of items available at the current epoch. We denote the set of knapsack compartments by C =

{1, 2, . . . , C}, the remaining capacity of compartment c in C at epoch k as qck, and the vector

of remaining compartment capacities at epoch k by qk = (qck)c∈C . We denote remaining overall

knapsack capacity at epock k by Qk. Let W c
k+1 be a binary random variable equal to one if an

item is available to compartment c following action selection in period k and zero otherwise. Let

Wk+1 = (W c
k+1)c∈C be the vector of random variables with realization wk+1 = (wck+1)c∈C marking

the beginning of period k + 1.

The pre-decision state at decision epoch k is sk = (qk, Qk, wk). Denoting by q̄c the initial

capacity of compartment c and by Q̄ the initial overall capacity, state sk belongs to state space

S = [0, q̄1] × [0, q̄2] × · · · × [0, q̄C] × [0, Q̄] × {0, 1}C . At the final decision epoch K, state sK
belongs to the set of terminal states SK = [0, q̄1]× [0, q̄2]× · · · × [0, q̄C]× [0, Q̄]× {0}C .

An action a = (a1, a2, . . . , aC) is a C-dimensional binary vector representing a decision to

accept or reject each available item at decision epoch k, where ac = 1 if the item presented to

compartment c is accepted and ac = 0 otherwise. When an item is presented to compartment c

in C, the fixed and known size of the item is dc. When the system occupies state sk, the feasible

22

action set is

A(sk) =

{
a ∈ {0, 1}C : (16)

ac = 0,∀ c ∈ {c′ : wc′k = 0}, (17)

acdc ≤ qck,∀ c ∈ C, (18)∑
c∈C

acdc ≤ Qk

}
. (19)

Condition (16) requires the action to be in the space of binary C-vectors. Condition (17) disallows

acceptance of unavailable items. Condition (18) enforces the compartmental capacity constraint

and condition (19) implements the overall capacity constraint.

When the system occupies state sk and action a is selected, a reward R(sk, a) is accrued.

Although the reward function may take a variety of forms, we adopt the following:

R(·, a) =
C∑
c=1

rcac + ηmax

{
C∑
c=1

rcac − γ, 0

}
, (20)

where rc is a fixed and known base reward for accepting an item into compartment c, η is a pa-

rameter in the range [0, 1], and γ is a non-negative parameter. The first term is the sum of the base

rewards for accepted items and the second term is an η × 100 percent bonus of the portion of the

base reward exceeding threshold γ. From a sales perspective, equation (20) may be interpreted as

a commission with an incentive to exceed sales of γ.

Selecting action a from pre-decision state sk triggers a deterministic transition to post-decision

state sak = (qk,a, Qk,a) in which the remaining capacity in compartment c is qck,a = qck − acdc and

remaining overall capacity is Qk,a = Qk −
∑

c∈C a
cdc. A stochastic transition to the next pre-

decision state sk+1 is triggered by the arrival of random information wk+1, the presentation of a

new set of items.

It is instructive to note connections to the single-compartment problem of Papastavrou et al.

(1996). If the following two conditions are satisfied, then the DSMKP can be decomposed into C

single-compartment dynamic and stochastic knapsack problems, each of which can be solved via

the methods of Papastavrou et al. (1996). First, the overall knapsack capacity must not be binding,

i.e., Q ≥
∑

c∈C q̄
c. Second, the reward accrued for a subset of items must be equal to the sum

of the rewards of the individual items. Our problem instances violate these conditions, thereby

making the problems unsolvable via the exact methods of Papastavrou et al. (1996) and therefore

more difficult.

23

Generally speaking, because the state and action spaces grow exponentially in size with the

number of knapsack compartments C, identifying optimal DSMKP policies via standard back-

ward induction is computationally intractable even for moderately-sized problem instances. Thus,

heuristic optimization techniques are warranted.

5.2 Greedy Policy

To facilitate our rollout algorithms, we develop a greedy heuristic policy πH(s) = (δgreedy
k , δgreedy

k+1 , . . . ,

δgreedy
K), where each algorithmic decision rule δgreedy is defined by the greedy action construction

procedure of Algorithm 6. Given current state sk at decision epoch k, Algorithm 6 identifies a

feasible action as follows. Line 1 of Algorithm 6 takes as input the current state and a user-defined

parameter α in the range (0, 1]. Line 2 initializes the action to the zero-vector. Let e(c) be a C-

dimensional vector with the cth element equal to one and all other elements equal to zero. Vector

e(c) represents the decision to accept only the item presented to compartment c and line 3 calculates

the reward for all such actions. Line 4 identifies an internal ordered set of compartment indices C̃
by sorting rewards in descending order and breaking ties by giving preference to lower-numbered

compartments. Line 5 sets internal variable Q̃ to remaining knapsack capacity Qk. Each iteration

of the loop comprising lines 6-11 selects a compartment index in C̃ and accepts the presented item

if doing so does not violate compartment and overall capacity constraints. Line 7 chooses com-

partment c randomly from the first dα|C̃|e element(s) of C̃. A purely greedy selection is achieved

by setting α small enough so that dα|C̃|e yields one, while larger values of α permit randomized

greedy selection from the first dα|C̃|e compartments in C̃. Lines 8-9 make the feasibility check and

line 10 removes the selected compartment from future consideration. Line 11 returns the action.

Similar to the “base policies” of Bertsekas (2005a), calling heuristic H(·) triggers the identi-

fication of an action in the current state and any subsequent state, which we achieve by executing

Algorithm 6. The restricted policy class Π̄ associated with H(·) is the set of maximal cardinal-

ity greedy policies – policies that at each epoch select as many items as will obey the capacity

constraints given the randomized greedy order that the items are selected in Line 7. Thus, the

restricted action set Ā(sk) contains all maximal cardinality greedy actions available from state sk.

As we describe in §5.3, the greedy aspect of the heuristic naturally leads to the consideration of

non-greedy actions in a hybrid rollout algorithm.

We also note that when α is set sufficiently small to result in purely (versus randomized) greedy

action construction, then the greedy heuristic is sequentially consistent. Generally speaking, con-

structing a policy via a sequence of deterministic decision rules – deterministic in the sense that

they always return the same action for a given state – satisfies Definition 10, thereby guaranteeing

24

Algorithm 6 Greedy Decision Rule δgreedy

1: input: sk = (qk, Qk, wk) and α ∈ (0, 1]

2: ac ← 0 for all c ∈ C
3: Calculate reward R(sk, e(c)) for each c ∈ {c′ ∈ C : wc

′

k = 1}
4: Sort rewards in descending order, giving preference to larger compartment indices in cases of

ties and call the resulting ordered set of indices C̃
5: Q̃← Qk

6: repeat
7: Randomly select compartment c from the first dα|C̃|e elements of C̃
8: if dc ≤ Q̃ and dc ≤ qck then
9: ac ← 1 and Q̃← Q̃− dc

10: C̃ ← C̃ \ {c}
11: until C̃ = ∅
12: return a

the rollout improvement property via Propositions 1 and 2. When α is larger the rollout improve-

ment property may still be achieved via the fortified rollout procedure of §4.3.

Although the expected reward-to-go of the greedy policy is not readily computable in closed

form, the value can easily be estimated via simulation. Similar to the procedure of Bertsekas and

Tsitsiklis (1996, chap. 5.2), from a given state sk, we randomly generate 1000 sequences of item

presentations (Wk,Wk+1, . . . ,WK) and average the reward earned by the heuristic policy πH(·)

across all sequences. We estimate heuristic policy rewards-to-go in this fashion for each rollout

algorithm in our computational experiments.

5.3 Computational Comparison of Rollout Variants

To obtain dynamic, state-dependent solutions to the DSMKP, we employ our greedy heuristic to

instantiate the rollout algorithms of §3. We implement our procedures in C++ and execute all

computational experiments on 2.8GHz Intel Xeon processors with between 12 and 48GB of RAM.

Our procedure never tested the limits of the RAM. We do not utilize parallel processing.

To highlight the computational implications of the various rollout algorithms, we review the

computational requirements of Algorithms 1-4 applied to the DSMKP. The one-step rollout algo-

rithm selects an action at the current epoch by looking ahead one step and applying Algorithm 6 in

the
∑

a∈A(sk) |S(sk, a)| possible sk+1 states. For the DSMKP, this results in O(22C) applications

of the greedy heuristic at each epoch. The post-decision rollout algorithm selects an action at the

25

current epoch by looking ahead a half-step and applying Algorithm 6 in the |A(sk)| possible sak
states. For the DSMKP, this results in O(2C) applications of the greedy heuristic at each epoch.

The pre-decision rollout algorithm selects an action at the current epoch via a single application of

Algorithm 6. An example of the various rollout procedures applied to the DSMKP can be found

in the Appendix.

As we show below in our computational experiments, although the pre-decision rollout algo-

rithm requires less computational effort than the one-step and post-decision rollout algorithms,

pre-decision rollout always selects a maximal cardinality greedy action, which may lead to poor

performance. Our hybrid rollout algorithm aims to improve the performance of pre-decision roll-

out while decreasing the computational requirement of post-decision rollout. In our hybrid rollout

algorithm, we set action set Â(sk) = {āk} to be the maximal cardinality greedy action returned by

the heuristic executed in the current state. Recognizing that non-greedy actions may lead to better

performance, we set Ǎ(sk) = {0} to the C-dimensional zero-vector, the action that rejects all pre-

sentations made to the knapsack at epoch k. We note that additional non-greedy actions could also

be included in Ǎ(sk) (such as a random subsets of the greedy set specified by {āk}), but our com-

putational experiments suggest consideration of the “reject-all” action bridges a significant portion

of the gap between pre- and post-decision rollout. Thus, at each decision epoch, the hybrid rollout

algorithm executes Algorithm 6 at most three times, once from the current state to identify āk and

once from the post-decision state corresponding to each action in {Ǎ(sk) ∪ Â(sk)} = {āk ∪ 0}.
We conduct computational experiments on the DSMKP by considering instances generated

by the Cartesian product of the parameter settings in Table 1. For each of the resulting 128 in-

stances, we randomly generate 100 sequences of item presentations and estimate the expected

reward achieved by a rollout policy on a given problem instance as the average performance across

the realizations. Several entries in Table 1 require clarification. The size of items presented to

compartment c, dc, is selected randomly as an integer in the range [1, 3] and is fixed at this value

for all problem instances. Similarly, the reward for accepting an item to compartment c, rc, is se-

lected randomly as an integer in the range [1, 10] and is fixed at this value for all problem instances.

Values of overall knapsack capacity Q̄ represent 50 and 75 percent of the sum of compartment ca-

pacities, respectively. Values of threshold γ represent 10 and 30 percent of the expected reward

presented to the knapsack at a decision epoch, respectively.

Table 2 displays the performance of the static application of the greedy policy – i.e., the ex-

pected reward accrued by following policy πH(s0) – and the dynamic application of the four rollout

variants for three values of α. When α equals 0.01, the greedy heuristic is sequentially consistent.

When α equals 0.3 or 0.5, we employ the fortified rollout procedure of §4.3. We present results

aggregated over the number of compartments, C. For each method, we display the estimate of the

26

Table 1: Problem Instance Parameters

Parameter Values

C 5, 15

K 10, 30

dc Uniform(1,3)

P{W c
k = wck} 0.3, 0.7

q̄c 5, 15

Q̄ 0.50Cq̄c, 0.75Cq̄c

rc Uniform(1,10)

η 0.25, 0.75

γ 0.1
∑

c∈C P{W c
k = wck}rc, 0.3

∑
c∈C P{W c

k = wck}rc

expected reward accrued. For a given method, across all values of α, we state the average number

of CPU seconds required to execute the method over a single realization.

Table 2: Rollout Algorithm Performance

C = 5 C = 15

Expected Reward Expected Reward
Method α = 0.01 α = 0.3 α = 0.5 CPU α = 0.01 α = 0.3 α = 0.5 CPU

Greedy Policy 137.9 138.0 138.3 0.0 342.3 343.1 344.3 0.0

Pre-Decision 137.9 138.0 138.3 0.9 342.3 343.2 344.3 2.4

Hybrid 154.0 154.2 154.2 1.1 367.6 367.9 368.9 2.9

Post-Decision 181.5 181.8 182.4 1.7 423.9 425.3 427.1 311.8

One-Step 181.5 181.9 182.5 54.9 – – – –

Table 2 demonstrates the expected tradeoff between computational effort and policy value:

as the heuristic decision rule looks farther ahead from pre-decision to hybrid to post-decision to

one-step, rollout performance improves and the CPU requirement increases. When C = 15, the

one-step rollout algorithm poses excessive computational requirements and is unable to execute

across all problem instances and realizations even after several days on a computing cluster with

over 100 cores. The hybrid rollout algorithm does not perform as well as the post-decision rollout

procedure, but posts markedly better performance than pre-decision rollout, requiring only slightly

more CPU time. Thus, for larger DSMKP instances, the hybrid rollout algorithm offers an at-

tractive compromise between myopic pre-decision rollout and computationally intensive one-step

rollout.

27

In addition to illustrating the computational benefits of our rollout framework, Table 2 illus-

trates our analytical results. While the performance improvement properties of §4 technically de-

pend on the exact calculation of mathematical expectation, our computational experiments suggest

they hold when estimating expectations with a sufficiently large number of simulations.

Because the greedy heuristic is sequentially consistent when α = 0.01, per Propositions 1

and 2, each rollout variant performs at least as well as the static implementation of the greedy

policy. Per Proposition 3, the dynamic application of the greedy heuristic in pre-decision roll-

out yields the same expected reward as the static greedy policy, demonstrating there is no value

in re-optimization when the heuristic is sequentially consistent. Further, as Proposition 4 sug-

gests, the hybrid, post-decision, and one-step rollout algorithms perform at least as well as the

pre-decision rollout algorithm. Moreover, as implied by Proposition 5, we observe post-decision

rollout achieves the same expected reward as one-step rollout, but requires only a fraction of the

computational effort.

When α equals 0.3 and 0.5, the adopted fortification guarantees the rollout improvement prop-

erty is achieved via Proposition 6. Additionally, we observe the expected reward increases as α

increases, suggesting that for the DSMKP, there exists a non-sequentially consistent greedy heuris-

tic that yields better performance than a sequentially consistent greedy heuristic. In general, this

result shows that sequential consistency, the method most common in the literature for establish-

ing rollout improvement, is not necessarily the best means of achieving rollout improvement. A

fortified heuristic may achieve better performance.

6 Conclusion

We present a rollout algorithm framework with the aim of making recent advances in rollout meth-

ods more accessible to the research community, particularly to researchers seeking heuristic solu-

tion methods for large-scale SDPs. Our framework formalizes rollout algorithm variants exploiting

the pre- and post-decision state variables as a means of overcoming computational limitations im-

posed by large state and action spaces. Our analytical results generalize results from the literature

and introduce new results that relate the performance of the rollout variants to one another. Relative

to the literature, our policy-based approach to presenting and proving results makes a closer con-

nection to the underpinnings of dynamic programming. We illustrate our framework and analytical

results via application to the DSMKP, a challenging sequential decision problem.

Based on our framework, our experience with the DSMKP, and computational results reported

in the literature, we can make general comments regarding how one might choose decision rules

28

when implementing a rollout algorithm in practice. For a given heuristic, our recommendation is

to select decision rules that can be evaluated within the time required to select actions and that

look ahead as many steps as possible. For those interested in guaranteeing performance based on

the results in §4, one also requires heuristic policies that are valid to the end of the horizon. Such

policies are commonly found in myopic or greedy policies, as we illustrate with the DSMKP. Fur-

ther, generalizing from the stochastic vehicle routing literature, rollout algorithms offer a method

to transform semi-static policies (e.g., policies based on simple recourse rules or thresholds) into

more dynamic policies that perform at least as well.

Future work might consider extending alternative methods for achieving the rollout improve-

ment property first proposed in Bertsekas et al. (1997). Some of these methods may be extensible

to the stochastic case. Another avenue of future research is to consider more broadly the work

of Bertazzi (2012) and Mastin and Jaillet (2015), which characterizes the performance of rollout

algorithms for knapsack problems. Similar results may be possible for other classes of problems.

At the same time, while research such as Novoa and Storer (2008) and Goodson et al. (2016)

demonstrate heuristics capable of exploring less restrictive policy classes have benefit, finding the

appropriate heuristic for each problem is currently more of an art than a science. Future work

providing more insight into this question would be valuable. Relatedly, it is possible for a rollout

algorithm to make use of heuristic policies that are feasible for only some number of decision

epochs in the future rather than to the end of the horizon. While such cases are not the focus of this

paper, an interesting area of future work would be computational studies comparing the quality of

the rollout policies obtained from such heuristic policies with the quality of rollout policies using

methods discussed in this paper.

Acknowledgments

The authors gratefully acknowledge the comments and suggestions of Nicola Secomandi and Dim-

itri Bertsekas as well as the comments of the anonymous referees.

References

Bertazzi, L. (2012). Minimum and worst-case performance ratios of rollout algorithms. Journal of Opti-

mization Theory and Applications 152(2), 378–393.

Bertsekas, D. (2005a). Dynamic programming and optimal control (3rd ed.), Volume I. Belmont, MA:

Athena Scientific.

29

Bertsekas, D. (2005b). Dynamic programming and suboptimal control: a survey from ADP to MPC. Euro-

pean Journal of Control 11, 310–334.

Bertsekas, D. (2013). Rollout algorithms for discrete optimization: a survey. In P. Pardolos, D. Du, and

R. Graham (Eds.), Handbook of Combinatorial Optimization, pp. 2989–2013. New York: Springer Sci-

ence+Business Media.

Bertsekas, D. and D. Castanon (1998). Rollout algorithms for stochastic scheduling problems. Journal of

Heuristics 5(1), 89–108.

Bertsekas, D. and J. Tsitsiklis (1996). Neuro-Dynamic Programming. Belmont, MA: Athena Scientific.

Bertsekas, D., J. Tsitsiklis, and C. Wu (1997). Rollout algorithms for combinatorial optimization. Journal

of Heuristics 3(3), 245–262.

Bertsimas, D., P. Chervi, and M. Peterson (1995). Computational approaches to stochastic vehicle routing

problems. Transportation Science 29(4), 342–352.

Bertsimas, D. and R. Demir (2002). An approximate dynamic programming approach to multidimensional

knapsack problems. Management Science 48(4), 550–565.

Bertsimas, D. and I. Popescu (2003). Revenue management in a dynamic network environment. Trans-

portation Science 37(3), 257–277.

Chang, H., M. Fu, J. Hu, and S. Marcus (2013). Simulation-Based Algorithms for Markov Decision Pro-

cesses (Second ed.)., Chapter 5, pp. 179–226. Communications and Control Engineering. London:

Springer.

Ciavotta, M., C. Meloni, and M. Pranzo (2009). Scheduling dispensing and counting in secondary pharma-

ceutical manufacturing. AIChE Journal 55(5), 1161–1170.

Ciavotta, M., C. Meloni, and M. Pranzo (2016). Speeding up a rollout algorithm for complex parallel

machine scheduling. International Journal of Production Research 54(16), 1–17.

Duin, C. and S. Voß(1999). The Pilot Method : A Strategy for Heuristic Repetition with Application to the

Steiner Problem in Graphs. Networks 34(3), 181–191.

Goodson, J., J. W. Ohlmann, and B. W. Thomas (2013). Rollout policies for dynamic solutions to the

multi-vehicle routing problem with stochastic demand and duration limits. Operations Research 61(1),

138–154.

Goodson, J. C., B. W. Thomas, and J. W. Ohlmann (2016). Restocking-based rollout policies for the vehicle

routing problem with stochastic demand and duration limits. Transportation Science 50(2), 591–607.

30

Guerriero, F. (2008). Hybrid rollout approaches for the job shop scheduling problem. Journal of optimization

theory and applications 139(2), 419–438.

Guerriero, F. and M. Mancini (2003). A cooperative parallel rollout algorithm for the sequential ordering

problem. Parallel Computing 29(5), 663–677.

Guerriero, F. and M. Mancini (2005). Parallelization strategies for rollout algorithms. Computational

Optimization and Applications 31(2), 221–244.

Guerriero, F., M. Mancini, and R. Musmanno (2002). New rollout algorithms for combinatorial optimization

problems. Optimization Methods and Software 17(4), 627–654.

Hvattum, L., A. Løkketangen, and G. Laporte (2007). A branch-and-regret heuristic for stochastic and

dynamic vehicle routing problems. Networks 49(4), 330–340.

Kim, S. and H. Chang (2003). Parallelizing parallel rollout algorithm for solving markov decision processes.

Lecture Notes in Computer Science 2716, 122–136.

Mastin, A. and P. Jaillet (2015). Average-case performance of rollout algorithms for knapsack problems.

Journal of Optimization Theory and Applications 165(3), 964–984.

Meloni, C., D. Pacciarelli, and M. Pranzo (2004). A Rollout Metaheuristic for Job Shop Scheduling. Annals

of Operations Research 131, 215–235.

Novoa, C. and R. Storer (2008). An approximate dynamic programming approach for the vehicle routing

problem with stochastic demands. European Journal of Operational Research 196(2), 509–515.

Pacciarelli, D., C. Meloni, and M. Pranzo (2011). Models and Methods for Production Scheduling in the

Pharmaceutical Industry. In K. G. Kempf, P. Keshinocak, and R. Uzsoy (Eds.), Planning Production and

Inventories in the Extended Enterprise, Volume 151 of International Series in Operations Research &

Management Science, Chapter 17, pp. 429–459. New York: Springer.

Papastavrou, J., S. Rajagopalan, and A. Kleywegt (1996). The dynamic and stochastic knapsack problem

with deadlines. Management Science 42(12), 1706–1718.

Powell, W. (2011). Approximate Dynamic Programming: Solving the Curses of Dimensionality (Second

ed.). Hoboken, NJ, USA: John Wiley and Sons.

Pranzo, M., C. Meloni, and D. Pacciarelli (2003). A New Class of Greedy Heuristics for Job Shop Schedul-

ing Problems. In K. Jansen, M. Margraf, M. Mastrolilli, and J. D. P. Rolim (Eds.), Experimental and

Efficient Algorithms, Volume 2647 of Lecture Notes in Computer Science, pp. 223–236. Berlin: Springer.

31

Secomandi, N. (1998). Exact and heuristic dynamic programming algorithms for the vehicle routing prob-

lem with stochastic demands. Ph. D. thesis, University of Houston, Houston, TX.

Secomandi, N. (2000). Comparing neuro-dynamic programming algorithms for the vehicle routing problem

with stochastic demands. Computers and Operations Research 27(11-12), 1201–1225.

Secomandi, N. (2001). A rollout policy for the vehicle routing problem with stochastic demands. Operations

Research 49(5), 796–802.

Secomandi, N. (2003). Analysis of a rollout approach to sequencing problems with stochastic routing

applications. Journal of Heuristics 9(4), 321–352.

Secomandi, N. (2008). An analysis of the control-algorithm re-solving issue in inventory and revenue

management. Manufacturing and Service Operations Management 10(3), 468–483.

Voß, S., A. Fink, and C. Duin (2005). Looking Ahead with the Pilot Method. Annals of Operations

Research 136, 285–302.

Appendix

Recall, we sometimes refer to generic states s without an index and to a decision epoch k. In these

cases, s may be either a pre- or post-decision state. When s is a pre-decision state, k is the decision

epoch associated with s. When s is a post-decision state, the decision epoch associated with s is

k − 1. A times we also refer to a generic state s′ on a given sample path. State s′ may also be a

pre- or post-decision state.

Proof of Proposition 1

Proofs are by induction. We begin with one-step rollout policy πone. The result holds trivially for

the i = K case. We assume the result holds for i = k + 1, . . . , K − 1. Then, for the i = k case:

E

[
K∑
i=k

Ri

(
si, δ

πH(sk)

i (si)
) ∣∣∣∣sk

]

≤ E

[
Rk

(
sk, δ

πH(sk)

k (sk)
)

+ E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)

i (si)
) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(21)

≤ max
a∈A(sk)

E

[
Rk (sk, a) + E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)

i (si)
) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(22)

32

= E

[
Rk (sk, δ

πone
k (sk)) + E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)

i (si)
) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(23)

≤ E

[
K∑
i=k

Ri (si, δ
πone
i (si))

∣∣∣∣sk
]
. (24)

Equation (21) follows from the assumption heuristic H(·) is sequentially improving and iterated

expectations. Equation(22) follows from the maximization. The equality in Equation(23) results

from the definition of one-step rollout. Equation (24) follows from the induction hypothesis.

Letting āk = δ
H(sk)
k (sk) and a? = δ

πpost
k (sk), the proof for post-decision rollout policy πpost

is similar to the proof for πone, the only addition being equation (28), which follows from the

assumption heuristicH(·) is sequentially improving:

E

[
K∑
i=k

Ri

(
si, δ

πH(sk)

i (si)
) ∣∣∣∣sk

]

≤ E

[
Rk

(
sk, δ

πH(sk)

k (sk)
)

+ E

[
K∑

i=k+1

Ri

(
si, δ

π
H(s

āk
k

)

i (si)

) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(25)

≤ max
a∈A(sk)

E

[
Rk (sk, a) + E

[
K∑

i=k+1

Ri

(
si, δ

πH(sa
k

)

i (si)
) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(26)

= E

[
Rk

(
sk, δ

πpost
k (sk)

)
+ E

[
K∑

i=k+1

Ri

(
si, δ

πH(sa
?

k
)

i (si)
) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(27)

≤ E

[
Rk

(
sk, δ

πpost
k (sk)

)
+ E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)

i (si)
) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(28)

≤ E

[
K∑
i=k

Ri

(
si, δ

πpost
i (si)

) ∣∣∣∣sk
]
. (29)

The proof for hybrid rollout policy πhy is identical to the proof for πpost, except the maximization

in equation (26) is over the actions {Ǎ(sk) ∪ Â(sk) and a? = δ
πhy
k (sk). The proof for pre-decision

rollout policy πpre follows suit:

E

[
K∑
i=k

Ri

(
si, δ

πH(sk)

i (si)
) ∣∣∣∣sk

]

≤ E

[
Rk

(
sk, δ

πH(sk)

k (sk)
)

+ E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)

i (si)
) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(30)

33

= E

[
Rk

(
sk, δ

πpre
k (sk)

)
+ E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)

i (si)
) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(31)

≤ E

[
K∑
i=k

Ri

(
si, δ

πpre
i (si)

) ∣∣∣∣sk
]
. (32)

Proof of Proposition 2

Because heuristicH(·) is sequentially consistent, for any state s in S and state s′ such that s′ is on

a sample path induced by policy πH(s),

E

[
K∑
i=k

Ri

(
si, δ

πH(s)

i (si)
) ∣∣∣∣s′

]
= E

[
K∑
i=k

Ri

(
si, δ

πH(s′)
i (si)

) ∣∣∣∣s′
]
, (33)

which satisfies the definition of a sequentially improving heuristic.

Proof of Proposition 3

The proof is by induction. The result holds trivially for the i = K case. We assume the result holds

for i = k + 1, . . . , K − 1. Then, for the i = k case:

E

[
K∑
i=k

Ri

(
si, δ

πH(sk)

i (si)
) ∣∣∣∣sk

]

= E

[
Rk

(
sk, δ

πH(sk)

k (sk)
)

+ E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)

i (si)
) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(34)

= E

[
Rk

(
sk, δ

πpre
k (sk)

)
+ E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)

i (si)
) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(35)

= E

[
K∑
i=k

Ri

(
si, δ

πpre
i (si)

) ∣∣∣∣sk
]
. (36)

Equation (34) follows from the assumption heuristic H(·) is sequentially consistent and iterated

expectations. Equation (35) follows from the definition of pre-decision rollout. Equation (36)

holds by the induction hypothesis.

34

Proof of Proposition 4

Because heuristic H(·) is sequentially consistent, it follows from Proposition 2 H(·) is also se-

quentially improving. Thus, by Proposition 1, for each rollout policy π in {πone, πpost, πhy},

E

[
K∑
i=0

Ri

(
si, δ

πH(s0)

i (si)
) ∣∣∣∣s0

]
≤ E

[
K∑
i=0

Ri (si, δ
π
i (si))

∣∣∣∣s0

]
. (37)

Equations (9), (10), and (11) follow from Proposition 3.

Proof of Proposition 5

Because heuristicH(·) is sequentially consistent, for a given action a and state sk, E[
∑K

i=k+1

Ri(si, δ
πH(sa

k
)

i (si))|sk] = E[
∑K

i=k+1Ri(si, δ
πH(sk+1)

i (si))|sk]. Thus,

max
a∈A(sk)

{
Rk(sk, a) + E

[
K∑

i=k+1

Ri

(
si, δ

π
H(sa

k)
i (si)

) ∣∣∣∣sk
]}

= max
a∈A(sk)

{
Rk(sk, a) + E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)
i (si)

) ∣∣∣∣sk
]}

, (38)

which implies

Rk

(
sk, δ

πpost
k (sk)

)
= Rk (sk, δ

πone
k (sk)) . (39)

The proof proceeds by induction. The result holds trivially for the case i = K. We assume the

result holds for i = k + 1, . . . , K − 1. Then, for the case i = k:

E

[
K∑
i=k

Ri (si, δ
πone
i (si))

∣∣∣∣sk
]

= E

[
Rk (sk, δ

πone
k (sk)) + E

[
K∑

i=k+1

Ri

(
si, δ

πpost
i (si)

) ∣∣∣∣sk+1

] ∣∣∣∣sk
]

(40)

= E

[
K∑
i=k

Ri

(
si, δ

πpost
i (si)

) ∣∣∣∣sk
]

(41)

Equation (40) holds by the induction hypothesis and iterated expectations. Equation (41) follows

from equation (39) and iterated expectations. If πone and πpost employ the same rule for breaking

ties among actions with equivalent evaluations, then equation (38) implies δπone
k = δ

πpost
k for k =

0, 1, . . . , K.

35

Proof of Proposition 6

The proof is by induction. The result holds trivially for the case i = K. We assume the result holds

for i = k + 1, . . . , K − 1. Then, for the case i = k:

E

[
K∑
i=k

Ri (si, δ
πbest
i (si))

∣∣∣∣sk
]

≤ max

{
E

[
K∑
i=k

Ri (si, δ
πbest
i (si))

∣∣∣∣sk
]
,

max
a∈A(sk)

E

[
Rk(sk, a) + E

[
K∑

i=k+1

Ri

(
si, δ

πH(sk+1)

i (si)
) ∣∣∣∣sk+1

] ∣∣∣∣sk
]}

(42)

= E

[
Rk (sk, δ

πf-one
k (sk)) + E

[
K∑

i=k+1

Ri (si, δ
πbest
i (si))

∣∣∣∣sk+1

] ∣∣∣∣sk
]

(43)

≤ E

[
K∑
i=k

Ri (si, δ
πf-one
i (si))

∣∣∣∣sk
]
. (44)

Equation (42) follows from the outer maximization and iterated expectations, equation (43) from

the definition of fortified one-step rollout, and equation (44) from the induction hypothesis and

iterated expectations.

Small DSMKP Example

To complement the application of our rollout algorithm framework to the DSMKP in §5, we present

a small example to further illustrate DSMKP system dynamics and the computational tradeoffs

among various rollout algorithms. Consider a DSMKP instance with C = 2 compartments that,

at decision epoch k, is in state sk = (qk, Qk, wk) = ((5 5), 5, (1 1)). Base rewards are r1 = 4

and r2 = 2 with parameters η = 0.25 and γ = 0.42. Item sizes are d1 = d2 = 3. Table 3 shows

for each action a in feasible action setA(sk) the associated post-decision state sak and the potential

pre-decision states sk+1 at the subsequent epoch. The one-step rollout procedure of Algorithm 1

requires the greedy procedure of Algorithm 6 be executed 12 times, once from each combination

of action and potential subsequent pre-decisions state sk+1 at the subsequent decision epoch. The

post-decision rollout procedure of Algorithm 2 reduces the number of Algorithm 6 applications to

three, once from each post-decision state sak. The pre-decision rollout procedure of Algorithm 3

executes Algorithm 6 once from pre-decision state sk.

36

The number of executions of the heuristic in the hybrid rollout procedure of Algorithm 4 de-

pends on the construction of Â(sk) and Ǎ(sk). Assuming we define Â(sk) = {āk} and Ǎ(sk) =

{(0 0)}, the hybrid rollout procedure of Algorithm 4 applies Algorithm 6 three times. First, Algo-

rithm 4 executes the heuristic from the pre-decision state sk and returns action āk. The possibilities

for āk are either (0 1) or (1 0) as the greedy heuristic does not consider (0 0), and (1 1) is infeasi-

ble. Suppose āk = (0 1). Then, Algorithm 4 executes the heuristic from the post-decision state sak
for all a ∈ {Ǎ(sk) ∪ Â(sk)} = {(0 1), (0 0)}. Note that we include the reject-all action in Ǎ(sk)

because the greedy heuristic does not consider action (0 0).

Table 3: DSMKP System Dynamics

Action Post-Decision State Pre-Decision State

a sak = (qk,a, Qk,a) sk+1 = (qk+1, Qk, wk)

(0 0) ((5 5), 5)

((5 5), 5, (0 0))

((5 5), 5, (0 1))

((5 5), 5, (1 0))

((5 5), 5, (1 1))

(0 1) ((5 2), 2)

((5 2), 2, (0 0))

((5 2), 2, (0 1))

((5 2), 2, (1 0))

((5 2), 2, (1 1))

(1 0) ((2 5), 2)

((2 5), 2, (0 0))

((2 5), 2, (0 1))

((2 5), 2, (1 0))

((2 5), 2, (1 1))

37

