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Abstract

We develop restocking-based rollout policies to make real-time, dynamic routing decisions

for the vehicle routing problem with stochastic demand and duration limits. Leveraging dom-

inance results, we develop a computationally tractable method to estimate the value of an

optimal restocking policy along a fixed route. Embedding our procedure in rollout algorithms,

we show restocking-based rollout out performs a priori-based rollout, demonstrating the value

of explicitly considering preemptive capacity replenishment in a rollout approach for dynamic

routing. We also demonstrate the effectiveness of basic local search versus more sophisticated

mechanisms for the heuristic component of the rollout procedure.

1 Introduction

Vehicle routing problems (VRPs) with stochastic demand arise in a variety of logistics and supply

chain management problems, such as less-than-truckload trucking (Bertsimas and Simchi-Levi,

1996) and vendor-managed distribution systems (Erera et al., 2009). In these and related prob-

lems, initial estimates of customer demand available at the time vehicle routes are planned often

differ from the actual demands observed upon arrival to customer locations. These uncertainties

1



in customer demands sometimes lead to costly route failures, situations where vehicle capacity is

inadequate to fully serve demand, requiring the vehicle to return to a central depot to replenish

capacity before continuing to service customers. The design of high-performance routing plans

that mitigate the impact of route failures is a key issue in algorithm development for VRPs with

stochastic demand.

Recent advances in communication technologies make it possible to move beyond static rout-

ing approaches (Campbell and Thomas, 2008) to dynamic solution methods that alleviate the ef-

fect of route failures by reoptimizing in response to observed customer demands. With operating

margins between two and four percent in the trucking industry (American Trucking Association,

2009), even small improvements in productivity can be helpful in combating the flat rates and ris-

ing costs characteristic of today’s trucking business (Wilson, 2011). In this paper, we focus on

dynamic routing solutions for the vehicle routing problem with stochastic demand and duration

limits (VRPSDL), where the objective is to maximize expected demand served subject to con-

straints on vehicle capacity and route duration.

To obtain solutions to the dynamic routing problem, we employ rollout procedures, a form of

approximate dynamic programming in which decision rules are evaluated only for observed states

by using heuristics to approximate the reward-to-go in the dynamic programming optimality equa-

tions (Bertsekas et al., 1997; Bertsekas, 2000; Goodson et al., 2013). A key challenge associated

with rollout procedures is balancing the computational burden of the heuristic with the quality of

the heuristic policy. An ideal heuristic facilitates real-time identification of high-quality dynamic

routing policies.

Heuristic quality and computational requirements can be balanced in at least two ways. First,

the search space can be restricted. In the context of Markov decision processes (MDPs), a restric-

tion is equivalent to limiting the set of policies over which we search – we refer to this as restricting

the policy class. Second, a heuristic’s quality and computational requirement are tied to the method

employed to find heuristic policies. For instance, when operating on a particular restricted policy

class, one might be able to solve for an optimal policy within the class using a math programming

technique. Alternatively, a greedy algorithm might accelerate the search, but may sacrifice policy
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quality.

In this paper, we address both the restricted policy class and the heuristic search method. To

address the effect of the restricted policy class, we relax the policy class we use for the heuristic

policies. Specifically, we relax the a priori fixed-route policy class of Goodson et al. (2013) by

considering policies that permit preemptive capacity replenishment, a policy class referred to in

the literature as restocking fixed-route policies. Notably, in contrast to the a priori-based heuristic

of Goodson et al. (2013), the relaxation allows the heuristic to explicitly evaluate restocking ac-

tions. As a result, for a given fixed route, the value of the optimal restocking policy is at least as

large as the value of the a priori policy along the same fixed route. The consequence is a better

estimate of the expected demand served in a rollout policy and thus a potentially better rollout

policy. However, it is computationally challenging to evaluate and search the space of restocking

fixed-route policies. To address this challenge, we develop a computationally tractable dynamic

programming procedure to identify an optimal restocking policy along a given fixed route and for

a given sample of customer demands. We significantly reduce the computation required to solve

the dynamic program by leveraging dominance results to prune the state-space graph. We apply

the dynamic programming procedure across multiple samples to estimate the expected value of an

optimal restocking policy along the fixed route.

To address the heuristic search method, in addition to the basic local search mechanism of

Goodson et al. (2013), we consider a more sophisticated variable neighborhood search as the

heuristic component of rollout algorithms. Surprisingly, despite the ability of the variable neigh-

borhood search to identify better static fixed-route policies, the local search heuristic yields su-

perior dynamic solutions. Our focus on the restricted policy class and heuristic search method

establish our main contribution: the development of a real-time, dynamic solution approach for a

multi-vehicle routing problem with stochastic demand that explicitly considers preemptive capac-

ity replenishment.

The remainder of the paper proceeds as follows. We formally state the VRPSDL and provide a

literature review in §2. In §3, we formulate the VRPSDL as a MDP. In §4, we describe our proce-

dure to estimate the expected value of an optimal VRPSDL restocking policy along a given fixed
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route. We embed our estimation method in the heuristic lookahead mechanism for the rollout poli-

cies described in §5. As our computational results in §6 show, the restocking-based rollout policies

for the VRPSDL yield better performance than the a priori-based rollout policies of Goodson et al.

(2013). This performance improvement is the result of our approach’s ability to effectively and

efficiently estimate the rewards-to-go using restocking fixed-route policies. We conclude the paper

in §7.

2 Problem Statement and Related Literature

We consider a fleet of capacitated vehicles serving a set of customers from a central depot. Before

a vehicle arrives at a customer, customer demand is known only in distribution. Upon arriving at a

customer, the realized demand is served to the fullest extent possible given the remaining capacity

available on the vehicle. If the vehicle’s capacity is consumed, the vehicle must return to the depot

to replenish capacity. Otherwise, after serving demand or replenishing capacity, the vehicle’s next

destination is chosen. The vehicle can go to any customer who has not yet been visited or who has

remaining demand, provided no vehicle is already en route or serving that customer. Further, the

vehicle can travel to the depot to preemptively replenish capacity. This decision is made based on

information known at the time of the decision and does not depend on any pre-planned tour. The

objective of the problem is to maximize the expected demand served given a limit on the working

day.

We use rollout algorithms to generate dynamic solutions to the VRPSDL. Rollout algorithms

rely on iterative applications of heuristics to select actions at each decision epoch. Because in this

paper our heuristic centers on restocking fixed-route policies, we focus much of our review on

literature related to restocking policies for a given fixed route. This literature centers on obtaining

restocking policies with an objective of minimizing some measure of travel cost. Although the

methods we develop focus on maximizing demand served, there are methodological similarities

between our work and the literature. For reviews of more general literature on stochastic routing,

we refer the reader to Goodson et al. (2013) and Goodson et al. (2012).
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Much of the literature on restocking policies is founded on the work of Bertsimas et al. (1995),

which considers restocking policies for a single-vehicle routing problem with stochastic demand.

For a given fixed route, Bertsimas et al. (1995) formulate a dynamic program to determine the

expected length of the route that results from following an optimal restocking policy. Because

Bertsimas et al. (1995) assume that customer demands are discrete, the dynamic program can be

solved in polynomial time. We formulate a dynamic program to determine the demand served by

following an optimal restocking policy for a given fixed route. However, because we model arrival

times to customers as continuous (rather than discrete), we are unable to obtain a similar complex-

ity result. In §4, we derive structural results and a forward dynamic programming procedure that

overcome this difficulty. Our results apply to both discrete- and continuous-time models.

Yang et al. (2000) establish a key structural property for the dynamic program proposed by

Bertsimas et al. (1995): an optimal restocking policy is to return to the depot if the available

vehicle capacity is below a threshold or otherwise continue directly to the next customer. Because

our objective is to maximize demand served, the threshold structure does not transfer to our work.

Yang et al. (2000) also show that routing a single vehicle along a single fixed route is equivalent

to using multiple vehicles unless additional constraints are imposed, such as the route duration

constraints we consider. Although the structural result reduces the computation required to evaluate

a fixed route as a restocking policy, Yang et al. (2000) find that searching for an optimal fixed route

is still computationally prohibitive. To further reduce computation, Yang et al. (2000) develop a

method to approximate the change in the expected length of a fixed route when it is modified by a

local search procedure. Bianchi et al. (2006) embed this approximation strategy in metaheuristic

procedures and demonstrate that the computational results of Yang et al. (2000) can be improved

by considering more complex search methods. In our work, we employ a local search procedure

to explore the space of restocking fixed-route policies, evaluating each policy via the methods we

develop in §4.

Secomandi (2003) develops a rollout procedure to search for restocking policies for a single-

vehicle routing problem with stochastic demand. Given an initial fixed route, the method is guar-

anteed to return a restocking fixed-route policy at least as good as the initial policy. In our work,
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we employ rollout to obtain solutions to the dynamic problem, using a restocking-based heuristic

to estimate expected demand served. Drawing on the notion of a fortified rollout policy (Bertsekas

et al., 1997; Goodson et al., 2013), we also guarantee weak improvement over an initial policy.

Tsirimpas et al. (2008) and Tatarakis and Minis (2009) consider three variations of the basic

model proposed by Bertsimas et al. (1995) to evaluate the expected length of a given fixed route:

the case of multi-product deliveries when each product is stored in its own compartment in the

vehicle, the case of multi-product deliveries when all products are stored together in the vehicle’s

single compartment, and the case in which the vehicle picks up from and delivers a single product

to each customer. The authors identify structural properties that aid in solving the dynamic pro-

grams. Demonstrating a threshold-type structure on the optimal policy for any integer-number of

vehicle compartments, Pandelis et al. (2012) generalize the work of Tatarakis and Minis (2009),

which applies to only two compartments. Again, because of differences in problem structure, the

structural results do not translate to the problem discussed in this paper.

To make dynamic routing decisions for a single-vehicle routing problem with stochastic de-

mand, the rollout procedures of Secomandi (2001) and Novoa and Storer (2009) employ restocking

fixed-route policies along a pre-determined base sequence of customers. Novoa and Storer (2009)

provide computational evidence that improving the base sequence can improve performance of the

base policy. By construction, our approach also improves upon a base restocking policy. Further,

we provide computational evidence of improvement resulting from consideration of restocking

fixed-route policies versus a priori fixed-route policies, i.e., the benefit of explicitly considering

preemptive capacity replenishment. While following an optimal restocking policy leads to perfor-

mance at least as good as the performance of the a priori policy along the same fixed route, there is

no guarantee the resulting rollout policy will yield improved solutions over a rollout policy based

on a priori fixed-route policies. However, our computational results demonstrate improved reward-

to-go estimates afforded by restocking fixed-route policies yield better rollout policy performance

than the a priori fixed-route policy class of Goodson et al. (2013).
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3 Problem Formulation

We formulate the problem of making dynamic routing decisions for the VRPSDL as a MDP. We

present a summary of the MDP model in this section and refer the reader to the electronic com-

panion of Goodson et al. (2013) for a detailed formulation. Let G = (N , E) be a complete graph

where N = {0, 1, . . . , N} is a set of N + 1 nodes and E = {(n, n′) : n, n′ ∈ N} is the set of

edges connecting the nodes. Node 0 represents a depot and nodes 1, . . . , N represent customer

locations. Travel times t(n, n′) associated with each edge (n, n′) in E are known and assumed

deterministic. LetM = {1, . . . ,M} be a set of M identical vehicles initially located at the depot.

Let Q denote vehicle capacity and L a route duration limit (e.g., end of a working day) by which

time all vehicles must return to the depot. Customer demands are random variables that follow a

known joint probability distribution F with a support restricted to be a subset of [0,∞)N .

The state of the system is the tuple (l, t, q, d, x). For each vehicle, vectors l, t, and q store vehi-

cle destinations, arrival times at vehicle destinations, and remaining vehicle capacities. The state

of vehicle m inM is denoted (lm, tm, qm). For each customer, vectors d and x store unserved cus-

tomer demand and the observed demand, respectively, both of which are unknown for customers

not yet visited. The state of demand at customer n in N is denoted (dn, xn).

An action is an assignment of the vehicles in M to locations in N . We place the following

restrictions on the available actions. Vehicles en route may not be diverted. If a vehicle’s capacity

will be depleted by serving customer demand at its current location, then the vehicle must return to

the depot to replenish. We prohibit actions assigning more than one vehicle to a customer at a time,

but allow multiple vehicles to simultaneously return to the depot. Over the horizon of the problem,

a customer may be visited multiple times by different vehicles. Actions forcing a vehicle to return

to the depot at a time greater than duration limit L are prohibited. Vehicles are not permitted to

wait at locations, except at the depot when it is not feasible to collect demand from the remaining

set of customers. We denote the pre-decision state at decision epoch k by sk, an action in action

space A(sk) by a, and the post-decision state corresponding to action a by sak (see Powell (2007)

for a discussion of pre- and post-decision states).
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The system dynamics proceed as follows. A decision epoch is triggered by the arrival of one or

more vehicles at customer locations or at the depot (multiple vehicles may arrive at their respective

locations simultaneously). Upon arrival to customer locations, actual demand is observed. In

addition, vehicle capacities are replenished for vehicles arriving at the depot. These events are

captured in the transition from post-decision state sak−1 to pre-decision state sk. For vehicles at

customer locations or at the depot (i.e., vehicles not en route), an action is selected indicating each

respective location these vehicles will travel to next. Vehicles currently at customer locations then

serve demand to the fullest extent given available vehicle capacity (total demand served in period

k is recorded as reward Rk(sk, a)) and the selected action, specifying the next destination for each

vehicle, is executed. These events are captured in the deterministic transition from pre-decision

state sk to post-decision state sak.

Let Π be the set of all Markovian deterministic policies for the VRPSDL. A policy π in Π is a

sequence of decision rules: π = (δπ0 , δ
π
1 , . . . , δ

π
K), where each decision rule δπk (sk) : sk 7→ A(sk) is

a function that specifies the action choice when the process occupies state sk and follows policy π.

We seek a policy π in Π that maximizes the total expected reward, conditional on initial state s0:

E[
∑K

k=0Rk(sk, δ
π(sk))|s0]. Denoting by V (sk) the expected reward-to-go from state sk in epoch

k through final decision epoch K, an optimal policy can be obtained by solving the optimality

equation V (sk) = maxa∈A(sk){Rk(sk, a)+E[V (sk+1)|sk, a]} for each epoch k and state sk in state

space S, where V (sK) = 0 for each absorbing state sK .

4 A Restocking Fixed-Route Policy for the VRPSDL

Our solution method for the MDP of §3 relies on heuristic estimates of future rewards. We estimate

the reward-to-go via restocking fixed-route policies. Because restocking fixed-route policies can

be computationally challenging to evaluate, in this section we develop a method to estimate the

value of an optimal restocking fixed-route policy along a given sequence of customers. We then

employ these estimates in our rollout-based solution procedure.

In §4.1, we discuss the decision rule associated with a restocking policy. For a given state, the
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decision rule is a function that determines if a vehicle should travel directly to the next customer

on the fixed route or first replenish capacity at the depot and then travel to the next customer. To

evaluate the decision rule, we estimate the value of these two decisions via the expected value with

perfect information, a computationally tractable upper bound on the value of an optimal restock-

ing fixed-route policy along the given customer sequence. In §4.2, we introduce a deterministic

dynamic program to facilitate estimation of the expected value with perfect information. We call

this dynamic program the auxiliary dynamic program to distinguish it from the MDP model pre-

sented in the previous section. Given a sequence of customers and sampled customer demands,

we solve a deterministic dynamic program to calculate the value of the optimal restocking policy

for the given demands. As we demonstrate in §4.3, averaging the values of the auxiliary dynamic

programs across multiple samples of customer demands is an unbiased estimate of the expected

value with perfect information and facilitates estimation of the reward-to-go.

4.1 A Restocking Decision Rule for a Given State Along a Given Fixed Route

A fixed route specifies a static ordering of customers for a driver to visit. A vehicle is required to

visit customers in the order specified by the fixed route. From a given customer on the fixed route,

the decision rule determines whether the vehicle should travel directly to the next customer on the

route or first replenish capacity at the depot.

We denote by vm a fixed route for vehicle m in vehicle setM, where vm = (vm1 , v
m
2 , . . . , v

m
Bm)

is a sequence of Bm locations such that vm1 is lm, the destination (or current location) of vehicle m

in state s, and the remaining locations are customers inN \ {0}. A fixed-route policy is character-

ized by v = (vm)m∈M, a set containing a fixed route for each vehicle m inM. In v, each customer

with pending or unknown demand appears exactly once on exactly one route.

After a vehicle m serves demand at a customer vmb , vehicle m may continue directly to the

next customer on its fixed route, vmb+1, or first replenish capacity at the depot before traveling to

customer vmb+1. The choice between direct travel and capacity replenishment is decided by the

action that leads to the largest estimate of expected demand served. If vmb is the final customer

on the fixed route, or if continuing to vmb+1 will result in a violation of the route duration limit,
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vehicle m is required to return to the depot. A return trip to the depot for the purpose of capacity

replenishment is required in the event of a route failure.

To precisely describe a restocking fixed-route decision rule, denote by π(v) = (π(vm))m∈M the

restocking fixed-route policy associated with the set of fixed routes v, which consists of a separate

policy for each vehicle m in M. At decision epoch k, suppose the process occupies state sk =

(l, t, q, d, x). Denote by Tk the time at which decision epoch k occurs and byM′ the set of vehicles

that reach their destinations at time Tk. Let vmb be the first customer on the fixed route for vehicle

m that will have pending or unknown demand after demand at the current location is served to the

fullest extent possible. Customer vmb may be the current location if available capacity is insufficient

to meet demand at the vehicle’s current location. If demand at all customers on the fixed route will

be served during the current period, then let vmb be the depot. Denote by V̂ π(vm)
replen (sk) the estimated

expected demand served with perfect information from customer vmb onward when the process

occupies state sk and capacity is replenished immediately prior to visiting vmb . Similarly, denote

by V̂ π(vm)
direct (sk) the estimated expected demand served with perfect information from customer vmb

onward when the process occupies state sk and the vehicle travels directly from its current location

to vmb . We explain the calculation of V̂ π(vm)
replen (sk) and V̂ π(vm)

direct (sk) in §4.3. Then, the fixed-route

decision rule for vehicle m is

δ
π(vm)
k (sk) =



lm, m 6∈ M′,

0, m ∈M′ and qm ≤ dlm ,

0, m ∈M′ and Tk + t(lm, v
m
b ) + t(vmb , 0) > L,

vmb , m ∈M′ and lm = 0,

0, m ∈M′ and V̂ π(vm)
replen (sk) > V̂

π(vm)
direct (sk),

vmb , otherwise.

(1)

The first case in equation (1) requires a vehicle en route to continue to its destination. The second

case assigns a vehicle to the depot if capacity will be depleted after serving demand at its current

location. The third case assigns a vehicle to the depot if traveling to customer vmb will result in
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a violation of the route duration limit. The fourth case directs the vehicle to customer vmb if the

vehicle is currently at the depot. The fifth case assigns the vehicle to the depot if preemptively

replenishing capacity results in a larger estimate of future demand served than directly proceeding

to the next customer vmb . The sixth case assigns the vehicle to location vmb . The decision rule for

policy π(v) consists of the decision rules for each fixed route composing v: δπ(v)
k = (δ

π(vm)
k )m∈M.

We note that although both a priori and restocking policies are characterized by fixed sequences

of customers, the decision rules associated with each policy type are different. Because decision

rule (1) permits preemptive capacity replenishment, the restocking policy action space is a superset

of the a priori policy action space. Thus, following an optimal restocking policy along a given fixed

route results in a larger expected demand served than following an a priori policy along the same

fixed route.

4.2 Auxiliary Dynamic Program

In §4.2.1, we formulate an auxiliary deterministic dynamic program to calculate the demand

served by an optimal restocking policy when customer demands are known along fixed route

vm = (vm1 , v
m
2 , . . . , v

m
Bm) for m ∈ M′. Recall from §4.1 that vmb is the first customer on the

fixed route that vehicle m will visit after the current location vm1 = lm is served to the fullest

extent possible. Therefore, the auxiliary dynamic program involves the sequence of customers

(lm, v
m
b , v

m
b+1, . . . , v

m
Bm). To ease notation, in this section we refer to this sequence as the fixed route

vm = (lm, v
m
b , v

m
b+1, . . . , v

m
Bm) = (vm1 , v

m
2 , . . . , v

m
Cm). In §4.2.2, we establish structural properties

which we then exploit in the solution method outlined in §4.2.3. Solving the dynamic program for

each realization in a sample of customer demands facilitates estimation of the reward-to-go for a

restocking policy and the calculation of the quantities V̂ π(vm)
replen (·) and V̂ π(vm)

direct (·) in equation (1).

4.2.1 Formulation

The auxiliary dynamic program has Cm stages, one for each customer on the fixed route. At stage

c, the state variable is the pair s̃c = (Qvmc , Avmc ), which denotes vehicle capacity upon initial arrival

to customer vmc and time of initial arrival to customer vmc , respectively. Actions available at stage
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c are ãr and ãd, representing preemptive capacity replenishment before traveling to customer vmc+1

and direct travel to customer vmc+1, respectively. We denote the transition function via S̃(·) =

(Q̃(·), Ã(·)), which returns the next state as a function of the current state and the selected action.

The stage-c reward is Zc(s̃c), the demand served at customer vmc . We seek a policy that maximizes

the sum of the demand served across all stages:
∑Cm

c=1 Zc(s̃c). We provide additional details below.

The quantities Qvmc and Avmc depend on the state at stage c− 1 and the action selected at stage

c− 1. As in §3, t(n, n′) denotes the time required to travel from location n to location n′. If action

ãdc−1 is selected at stage c− 1, we separate the calculation of Q̃(s̃c−1, ã
d
c−1) and Ã(s̃c−1, ã

d
c−1) into

three cases:

Q̃(s̃c−1, ã
d
c−1) =


Qvmc−1

− xvmc−1
, xvmc−1

< Qvmc−1
,

Q,
xvmc−1

−Qvmc−1

Q
=
⌈xvmc−1

−Qvmc−1

Q

⌉
,⌈xvmc−1

−Qvmc−1

Q

⌉
Q− xvmc−1

+Qvmc−1
,

xvmc−1
−Qvmc−1

Q
<
⌈xvmc−1

−Qvmc−1

Q

⌉
,

(2)

and

Ã(s̃c−1, ã
d
c−1) =



Avmc−1
+ t(vmc−1, v

m
c ), xvmc−1

< Qvmc−1
,

Avmc−1
+
(xvmc−1

−Qvmc−1

Q
+ 1
)
t(vmc−1, 0)

+
(xvmc−1

−Qvmc−1

Q

)
t(0, vmc−1) + t(0, vmc ),

xvmc−1
−Qvmc−1

Q
=
⌈xvmc−1

−Qvmc−1

Q

⌉
,

Avmc−1
+ t(vmc−1, v

m
c ) +

⌈xvmc−1
−Qvmc−1

Q

⌉
×
(
t(vmc−1, 0) + t(0, vmc−1)

)
,

xvmc−1
−Qvmc−1

Q
<
⌈xvmc−1

−Qvmc−1

Q

⌉
,

(3)

where the boundary conditions vm1 = lm, Qvm1
= qm, and Avm1 = tm are given by the current

state of vehicle m in the original MDP. In the first case, demand at customer vmc−1 is less than

vehicle capacity upon arrival to vmc−1, thus vehicle capacity is simply decremented by the amount

of demand and the vehicle travels directly from vmc−1 to vmc . The second and third cases account for

situations where demand at customer vmc−1 is greater than or equal to vehicle capacity upon arrival

to vmc−1, thereby requiring return trips to the depot to replenish capacity. The required number of
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return trips is d(xvmc−1
−Qvmc−1

)/Qe. In the second case, satisfying demand at vmc−1 exactly depletes

vehicle capacity, thus requiring the vehicle to replenish at the depot one additional time and travel

directly to customer vmc with full capacity. In the third case, there is some capacity remaining after

serving demand at customer vmc−1. After making the necessary return trips to the depot, the vehicle

travels directly from vmc−1 to vmc with the remaining capacity.

If action ãrc−1 is selected at stage c−1, then capacity replenishment yields full vehicle capacity

upon arrival to customer vmc : Q̃(s̃c−1, ã
r
c−1) = Q. We separate the calculation of the initial arrival

time to customer vmc into the same three cases considered in equation (3):

Ã(s̃c−1, ã
r
c−1) =



Avmc−1
+ t(vmc−1, 0) + t(0, vmc ), xvmc−1

< Qvmc−1
,

Avmc−1
+
(xvmc−1

−Qvmc−1

Q
+ 1
)
t(vmc−1, 0)

+
(xvmc−1

−Qvmc−1

Q

)
t(0, vmc−1) + t(0, vmc ),

xvmc−1
−Qvmc−1

Q
=
⌈xvmc−1

−Qvmc−1

Q

⌉
,

Avmc−1
+ t(vmc−1, 0) + t(0, vmc ) +

⌈xvmc−1
−Qvmc−1

Q

⌉
×
(
t(vmc−1, 0) + t(0, vmc−1)

)
,

xvmc−1
−Qvmc−1

Q
<
⌈xvmc−1

−Qvmc−1

Q

⌉
.

(4)

Equation (4) is similar to equation (3), except that in the first and third cases, vehicle capacity is

preemptively replenished via an additional trip to the depot.

To compute Zc(s̃c), we consider the route duration limit, noting violations of the route duration

limit result in zero demand served. Four cases are considered in the calculation:

Zc(s̃c) =



0, Avmc > L− t(vmc , 0),⌊
L−t(vmc ,0)−Avmc

t(vmc ,0)+t(0,vmc )

⌋
Q+Qvmc ,

⌊
L−t(vmc ,0)−Avmc

t(vmc ,0)+t(0,vmc )

⌋
<
⌈
xvmc −Qvmc

Q

⌉
,

xvmc , xvmc ≤ Qvmc and Avmc ≤ L− t(vmc , 0),

xvmc ,
⌊
L−t(vmc ,0)−Avmc

t(vmc ,0)+t(0,vmc )

⌋
≥
⌈
xvmc −Qvmc

Q

⌉
.

(5)

In the first case, zero demand is served because the route duration limit is violated. In the second

case, only a portion of demand is served because the vehicle does not have enough time to make

the return trips to the depot necessary to serve demand in full. In the third case, demand is served in
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full because the vehicle arrives prior to the route duration limit and with sufficient capacity. In the

fourth case, demand is served in full because the vehicle has enough time to make any necessary

replenishments.

Denote by Ṽc(s̃c; vm, x) the reward-to-go at stage c when the state is s̃c, the fixed route is vm,

and customer demands are given by the vector x. An optimal policy can be obtained by solving

for all possible states s̃c

Ṽc(s̃c; v
m, x) = Zc(s̃c) + max

a∈{adc ,arc}

{
Ṽc+1

(
s̃c+1 = S̃(s̃c, a)

)}
, (6)

for c = 1, . . . , Cm − 1 and ṼCm(s̃Cm ; vm, x) = ZCm(s̃Cm). In §4.2.2 and §4.2.3, we propose

methods to solve these optimality equations.

4.2.2 Structural Properties

A sequence of states from stage 1 to stage Cm in the auxiliary dynamic program represents one

possible sequence of arrival time and capacity upon arrival to each customer vm1 , . . . , v
m
Cm on the

fixed route. Consider a sequence of states s̃1, s̃2, . . . , s̃c′ , . . . , s̃Cm , where c′ is the first stage such

that the demand at customer vmc′ is not fully served, i.e., Z(s̃c′) < xvm
c′

. By equation (5), it must

be that demand is not fully served because doing so violates the route duration limit. Assuming

the triangle inequality holds for travel times, then because we require demand to be served in full

at customer vmc′ before proceeding to customer vmc′+1, it is not possible to serve any demand at

customers vmc′+1, v
m
c′+2, . . . , v

m
Cm because doing so violates the route duration limit. We formalize

this observation in Proposition 1 (see Appendix A for the proof). In §4.2.3, we use this result to

prune the state space in a forward dynamic programming solution approach.

Proposition 1. Assume travel times t(·, ·) satisfy the triangle inequality. Consider a sequence of

states s̃1, s̃2, . . . , s̃Cm . Let c′ be the smallest c such that Zc(s̃c) < xvmc . If c′ exists, then:

(i). Zc(s̃c) = 0 for c = c′ + 1, c′ + 2, . . . , Cm; and

(ii). Zc(s̃c) = xvmc for c = 1, 2, . . . , c′ − 1.
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Proposition 2 shows the demand served from a given state s̃c through s̃Cm is non-decreasing as

the capacity upon arrival Qvmc increases and as the arrival time Avmc decreases (see Appendix A for

the proof). We use this dominance relationship, in conjunction with Proposition 1, to further prune

the state space in the forward dynamic programming approach we develop in §4.2.3.

Proposition 2. For s̃c = (Qvmc , Avmc ) and s̃′c = (Q′vmc , A
′
vmc

) such that 0 ≤ Qvmc ≤ Q′vmc and

0 ≤ A′vmc ≤ Avmc , Ṽc(s̃c; vm, x) ≤ Ṽc(s̃
′
c; v

m, x).

4.2.3 Solution Approach

Because we do not require travel times to be discrete, the state space of the auxiliary dynamic

program is infinite, thereby rendering the standard backward dynamic programming procedure

computationally intractable. Instead, we develop a forward dynamic programming approach that

only considers states that may actually occur as a result of a given initial state. Our approach mir-

rors the well-known reaching algorithm for dynamic programming (Denardo, 2003) and leverages

the structural results of §4.2.2 to prune the state-space graph. Our forward dynamic programming

procedure is able to obtain the values of optimal restocking policies for large fixed routes. Without

the pruning afforded by our structural results, our forward approach enumerates the entire solu-

tion space. We note our structural results and forward solution approach are also applicable to the

discrete-time case.

Our solution approach utilizes a graph structure. Each node in the graph is labeled by a state,

the demand served in that state, and the total demand served so far. Thus, a node associated with

a state s̃c is represented by the tuple (s̃c = (Qvmc , Avmc ), Zc(s̃c), λc =
∑c

i=1 Zi(s̃i)). Nodes are

connected by arcs representing actions. An arc from a node s̃c−1 to a node s̃c represents an action

ãc−1 ∈ {ãdc−1, ã
r
c−1} denoting the decision to travel directly from vmc−1 to vmc or to first replenish

capacity at the depot. The graph is constructed in stages, one for each customer on the fixed

route. We refer to the set of nodes belonging to stage c as Λc. Stage 1 of the graph is constructed

via s̃1, the given initial state of the vehicle. Stage 2 is constructed by extending the initial node

corresponding to state s̃1, i.e., by generating the states S̃(s̃1, ã
d) and S̃(s̃1, ã

r) that result by taking

actions ãd1 and ãr1 from the initial state. Any stage c + 1 is constructed in a similar manner by
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extending the nodes in stage Λc. The node in ΛCm that achieves the largest λCm indicates the value

of the optimal restocking policy for the given fixed route. The optimal policy is represented by the

sequence of actions leading to this node.

The total number of nodes in the graph is 2C
m − 1, where Cm is the number of customers on

the fixed route. The total number of node sequences from stage 1 through stage Cm, each of which

represents a policy, is 2C
m−1. In our computational experience, storing the graph in memory be-

comes problematic as Cm approaches 25. Further, because the local search on restocking policies

we discuss in §5 requires us to obtain optimal restocking policies for many fixed routes, evaluating

fixed routes can be computationally prohibitive even when Cm is much smaller.

These computational issues can be mitigated by exploiting Propositions 1 and 2. Consider a

partial path through the graph, which we denote by the sequence of states s̃1, s̃2, . . . , s̃c′ , where

c′ is the first stage along this path such that the demand at customer vmc′ is not fully served.

By Proposition 1, any extension of this path will result in zero demand served at customers

vmc′+1, v
m
c′+2, . . . , v

m
Cm , i.e., Zc(s̃c) = 0 for c = c′ + 1, c′ + 2, . . . , Cm. Thus, to obtain the value

of the optimal restocking policy, it is only necessary to extend nodes that fully serve demand.

Thus, at stage c, we only extend nodes in the set Λ′c = {(s̃c, Zc(s̃c), λc) : Zc(s̃c) = xvmc }.

Additional pruning is possible by using the result of Proposition 2 to further refine Λ′c. For any

two nodes (s̃c = (Qvmc , Avmc ), Zc(s̃c), λc) and (s̃′c = (Q′vmc , A
′
vmc

), Zc(s̃
′
c), λc) in Λ′c, if Qvmc ≤ Q′vmc

and A′vmc ≤ Avmc , then it is not necessary to extend s̃c because the total demand served by ex-

tending s̃′c will be at least as large. More formally, let Λ′′c = {(s̃c, ·, ·) ∈ Λ′c : @ (s̃′c, ·, ·) ∈

Λ′c such that either Qvmc < Q′vmc , A
′
vmc
≤ Avmc or Qvmc ≤ Q′vmc , A

′
vmc

< Avmc } be the set of non-

dominated nodes in Λ′c. Proposition 2 guarantees that an optimal policy will be obtained by ex-

tending only the non-dominated nodes in the set Λ′′c ⊆ Λ′c.

Algorithm 1 details our forward dynamic programming procedure. The EVALUATE(vm, x, s̃1)

procedure in Algorithm 1 takes as input a fixed route vm, customer demands x, and initial state s̃1

at customer vm1 . It returns Ṽ1(s̃1; vm, x), the value of the optimal restocking policy for fixed route

vm when customer demands are x and the initial state at customer vm1 is s̃1. The procedure begins

on line 2 by initializing Λ1 with the given initial state s̃1, Z1(s̃1), and λ1 = Z1(s̃1), the demand
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served in state s̃1. For c = 2, . . . , Cm, Λc is initialized to the empty set. Line 4 begins the process

of identifying nodes in Λc to extend. Per Proposition 1, states not fully serving demand at customer

vmc need not be extended. Thus, Λ′c ⊆ Λc restricts attention to nodes such that Zc(s̃c) = xvmc . If Λ′c

is empty, then, by Proposition 1, it is not necessary to extend any nodes because doing so will not

increase the total demand served. Line 6 accomplishes this by exiting the for-loop. In line 7, the

set of nodes to be extended is further refined by applying Proposition 2. When identifying nodes

for inclusion in Λ′′c , it may be that several nodes are identical, and therefore none of the nodes

dominates the others. In such cases, we extend one of these nodes, provided it is not dominated by

another node. Lines 9 and 10 construct Λc+1 by extending the nodes in Λ′′c . Line 11 identifies the

non-empty node set with the largest index, c̄. Finally, the procedure returns the maximum demand

served by the nodes in Λc̄.

Algorithm 1 Valuation of Optimal Restocking Policy
1: procedure EVALUATE(vm, x, s̃1)

2: Λ1 ← {(s̃1, Z1(s̃1), λ1 = Z1(s̃1))}, Λc ← ∅ for c = 2, 3, . . . , Cm

3: for c = 1 to Cm − 1 do

4: Λ′c ← {(s̃c, Zc(s̃c), λc) ∈ Λc : Zc(s̃c) = xvmc }

5: if Λ′c = ∅ then

6: break

7: Λ′′c ← {(s̃c, ·, ·) ∈ Λ′c : @ (s′c, ·, ·) ∈ Λ′c such that Qvmc ≤ (<)Q′vmc , A
′
vmc

< (≤)Avmc }

8: for (s̃c, λc) ∈ Λ′′c do

9: Λc+1 ← Λc+1 ∪ {(s̃c+1 = (Q̃(s̃c, ã
d
c), Ã(s̃c, ã

d
c)), Zc+1(s̃c+1), λc + Zc+1(s̃c+1)}

10: Λc+1 ← Λc+1 ∪ {(s̃c+1 = (Q̃(s̃c, ã
r
c), Ã(s̃c, ã

r
c)), Zc+1(s̃c+1), λc + Zc+1(s̃c+1)}

11: c̄← largest c ∈ {1, 2, . . . , Cm} such that Λc 6= ∅

12: return max{λc̄ : (s̃c̄, Zc̄(s̃c̄), λc̄) ∈ Λc̄}

The example in Table 1 and Figure 1 illustrates Algorithm 1. Table 1 displays data for a fixed

route vm = (23, 22, 13, 15, 2) from problem instance R101(25) of Solomon (1987) with vehicle

capacity Q = 50 and route duration limit L = 171.681. The column labeled “xvmc ” displays

the sampled demand at customer vmc . The horizontal and vertical coordinates of each customer
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Table 1: Example Data
c vmc xvm

c
x-coord y-coord

1 23 39 55 5

2 22 18 45 10

3 13 23 30 25

4 15 8 30 5

5 2 7 35 17

are given in the columns labeled “x-coord” and “y-coord,” respectively. The depot is located at

(35, 35) and one time unit is equal to one unit of distance, as measured by the Euclidian metric.

Figure 1 depicts the full graph for the fixed route in Table 1. For convenience, each node is

numbered in the upper-left corner. We demonstrate Algorithm 1 by stepping through the con-

struction of the graph in Figure 1. Given vm = (23, 22, 13, 15, 2), x = (39, 18, 23, 8, 7), and

s̃1 = (50, 36.0555), the procedure begins by calling EVALUATE(vm, x, s̃1). Node set Λ1 is ini-

tialized via s̃1, Z1(s̃1) = 39, and λ1 = 39. Because Λ1 = Λ′1 = Λ′′1 = {1}, node 1 is ex-

tended to create Λ2 = {2, 3}. Because Λ2 = Λ′2 = Λ′′2, nodes 2 and 3 are extended to create

Λ3 = {4, 5, 6, 7}. All four nodes in Λ3 fully serve demand at customer vm3 = 13, thus Λ′3 = Λ3.

However, node 5 is dominated by node 7, thus we only extend the nodes in Λ′′3 = {4, 6, 7} to

create Λ4 = {8, 9, 12, 13, 14, 15}. Only node 12 fully serves demand at customer vm4 = 15, thus

Λ′4 = Λ′′4 = {12}. Extending node 12 results in Λ5 = {24, 25}. The procedure concludes by

returning max{89, 88} = 89, which is the value of the optimal restocking policy for fixed route

vm when demand is x and the initial state is s̃1. The optimal policy is represented by the sequence

of nodes 1, 3, 6, 12, 24, which corresponds to an optimal sequence of actions ãr1, ã
d
2, ã

d
3, ã

d
4.

In this example, Algorithm 1 decreases the number of nodes in the graph from 31 to 15. In our

experience, for large fixed routes, Algorithm 1 can decrease the number of nodes by several orders

of magnitude, thereby making it computationally feasible to solve the dynamic program required

to obtain an optimal restocking policy for a given fixed route. For smaller problem instances where

the sequence of customers in a fixed route is typically shorter, we observe runtime reductions up

to 75 percent when embedding Algorithm 1 in the local search heuristic we discuss in §5.
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4.3 Estimation of Policy Value

Using the notation of §4.2.1, we can now define the quantities V̂ π(vm)
replen (·) and V̂ π(vm)

direct (·) used in the

decision rule of equation (1) in the original MDP. Recall V̂ π(vm)
replen (·) is the estimated expected de-

mand served with perfect information when preemptively restocking capacity prior to continuing

to the next customer and V̂ π(vm)
direct (·) is the estimated expected demand served with perfect infor-

mation when traveling directly to the next customer. Let x̂1, x̂2, . . . , x̂P be P customer demand

vectors generated randomly from distribution function F . Then,

V̂
π(vm)

replen (sk) =
1

P

P∑
p=1

Ṽ2

(
S̃ ((qm, tm), ãr) ; vm, x̂p

)
(7)

and

V̂
π(vm)

direct (sk) =
1

P

P∑
p=1

Ṽ2

(
S̃
(
(qm, tm), ãd

)
; vm, x̂p

)
, (8)

Recalling the notation for fixed route vm = (lm, v
m
b , v

m
b+1, . . . , v

m
Bm) = (vm1 , v

m
2 , . . . , v

m
Cm), the

quantity Ṽ2(S̃((qm, tm), ãr); vm, x̂p) is the demand served from customer vmb onward when cus-

tomer demands are x̂p, vehicle capacity at location lm is qm, time of arrival to lm is tm, and capacity

is replenished immediately prior to visiting vmb . The quantity Ṽ2(S̃((qm, tm), ãd); vm, x̂p) is analo-

gous, except the vehicle travels directly from lm to vmb , foregoing the opportunity to restock at the

depot. We also note estimating expected demand served with perfect information is equivalent to

the perfect information relaxation with zero penalty (Brown et al., 2010).

In §5, we estimate the value of restocking policies as part of local search and rollout procedures.

Denote by

V̂ π(vm)(s) =
1

P

P∑
p=1

Ṽ1 ((qm, tm); vm, x̂p) (9)

the estimated expected demand served from state s onward by restocking fixed-route policy π(vm).

When the original MDP occupies a pre-decision state sk, demand is known at current vehicle

locations l. In this case, equation (9) is related to equations (7) and (8) via the period-k reward in

the original MDP:
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V̂ π(vm)(sk) = Rk(sk, ·) + max
{
V̂
π(vm)

direct (sk), V̂
π(vm)

replen (sk)
}
. (10)

Finally, denote by

V̂ π(v)(s) =
∑
m∈M

V̂ π(vm)(s) (11)

the estimated expected demand served from state s onward by policy π(v), the collection of re-

stocking fixed-route policies for the vehicles comprisingM.

5 Rollout Policies

We employ rollout procedures to dynamically adjust routing plans for the VRPSDL. Rollout algo-

rithms are heuristic versions of policy iteration for dynamic programs and employ the concept of

forward dynamic programming where decision rules are calculated only for observed states (Bert-

sekas et al., 1997; Bertsekas, 2000). From a current state, the reward-to-go is approximated by

heuristic policies, and these approximations are then used to guide action selection in the current

state.

Using the rollout policy framework of Goodson et al. (2013), Goodson et al. (2013) develop

a priori-based rollout procedures for the VRPSDL. We utilize the same framework, but seek to

improve upon the a priori-based heuristic via a restocking-based heuristic. The restocking-based

heuristic relaxes the a priori restricted policy class of Goodson et al. (2013) by giving explicit

consideration to preemptive capacity replenishment actions. Further, because the expected demand

served by a restocking policy is at least as large as the expected demand served by an a priori

policy along the same fixed route, a restocking-based heuristic can potentially lead to better action

selection in the rollout procedure. We describe three restocking fixed-route heuristics in §5.1 and

the rollout policies in §5.2.
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5.1 Restocking Fixed-Route Heuristics

We consider three heuristic search mechanisms for restocking fixed-route policies: a random

heuristic, a local search heuristic, and a variable neighborhood search heuristic. We use these

three heuristics in §6 to study the effect of more sophisticated search mechanisms.

The random heuristic randomly selects a set of fixed routes from V(s), the space of all fixed

routes when the process occupies pre- or post-decision state s. The policy returned by the random

heuristic is the restocking policy associated with the selected set of fixed routes.

As in Goodson et al. (2013), the local search heuristic obtains heuristic policies via a first-

improving local search on 1-relocation neighborhoods of V(s). The 1-relocation neighborhood of

a set of fixed routes v can be obtained by relocating a customer vmi after another customer vm′j such

that i 6= 1. The condition i 6= 1 ensures vehicles’ current destinations, given by state s, are fixed

for all solutions in the neighborhood.

Each iteration of the local search proceeds as follows. Given a current set of restocking fixed

routes v, a set of restocking fixed routes v̄ is randomly selected from the relocation neighborhood of

v. Recalling the notation of §4.3, if the estimated value of policy π(v̄) is greater than the estimated

value of policy π(v) (i.e., V̂ π(v̄)(s) > V̂ π(v)(s)), then the current set of fixed routes is updated

to be v̄ and the process repeats. Otherwise, the search continues by randomly selecting another

set of fixed routes from the relocation neighborhood of v. The procedure terminates and returns

fixed-route policy π(v) if there does not exist a set of fixed routes v̄ in the relocation neighborhood

of v such that V̂ π(v̄)(s) > V̂ π(v)(s).

When calculating V̂ π(v̄)(s), it may not be necessary to execute the full auxiliary dynamic pro-

gram. The structures of the state-space graphs associated with routes vm and v̄m for a given demand

sample are identical up until the point of insertion or removal of a customer. Consequently, if the

same demand samples are used to calculate V̂ π(vm)(s) and V̂ π(v̄m)(s), then the state-space graphs

used to calculate V̂ π(v̄m)(s) need only be reconstructed from the point of insertion or removal

onward.

More generally, let v̄ be obtained by relocating a customer vmi after customer vm′j . If m = m′

and i < j, then it is only necessary to reconstruct the state-space graphs for route m from stage
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i onward. For a given demand sample, this is accomplished by beginning Algorithm 1 at the ith

iteration of line 3, which begins construction of the nodes in stage i by extending the nodes in stage

i − 1, the largest stage common to the state-space graphs for routes vm and v̄m. If m = m′ and

i ≥ j, then it is only necessary to reconstruct the state-space graphs for route m from stage j + 1

onward. Similarly, if m 6= m′, then it is only necessary to reconstruct the state space graphs from

stage i onward on routem and from stage j+1 onward on routem′. Our computational experience

suggests updating state-space graphs in this fashion significantly reduces the computation required

to evaluate restocking fixed-route policies in the relocation neighborhood of a current policy.

The variable neighborhood search heuristic follows Figure 1 of Hansen and Mladenović (2001).

We employ the first-improving search on the 1-relocation neighborhood in the local search phase

and extend the 1-relocation neighborhood to a k-relocation neighborhood for the shaking phase. A

k-relocation neighbor for a set of fixed routes is a set of fixed routes obtained by moving a sequence

of k locations to new positions. The variable neighborhood search proceeds as follows. Given an

initial solution and beginning with k set to 1, we repeat the following steps until k reaches 3. First,

randomly select a set of fixed routes from the k-relocation neighborhood of the current solution.

Second, apply the first-improving local search method to the selected set of fixed routes. Third, if

the resulting set of fixed routes yields a better restocking policy than the incumbent solution, update

the incumbent and reset k to 1; otherwise increment k. Once k reaches 3, the incumbent solution

is compared to the initial solution. If the incumbent solution is better than the initial solution, the

three-step procedure is repeated with the incumbent set as the initial solution; otherwise, the search

terminates.

5.2 One-Step, Post-Decision, and Pre-Decision Rollout

Figure 2 provides a graphical depiction of our rollout policies. Figure 2a depicts the MDP for-

mulation of the VRPSDL as a decision tree: square nodes represent pre-decision states, solid arcs

are feasible actions, circle nodes symbolize post-decision states, and dashed arcs signify observed

customer demands. Figure 2b displays one-step rollout within the decision tree framework. From

a current state sk, one-step rollout estimates the reward-to-go for selecting action a by first mak-
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Figure 2: Rollout Policies in the Context of Decision Trees

ing transitions to all pre-decision states sk+1 that may be possible at the next decision epoch as a

result of each action a and observing customer demands. From each state sk+1, we execute one

of the restocking fixed-route heuristics of §5.1, which we denote by “Restocking Heuristic.” The

expected value of the policies returned by the executions of the restocking fixed-route heuristic

serve as the estimate of the reward-to-go for selecting action a. One-step rollout selects an action

that maximizes the sum of the current-period reward plus the estimated reward-to-go.

In the post-decision rollout policy depicted in Figure 2, we transition to the post-decision state

sak associated with an action a rather than to all possible pre-decision states at the next decision

epoch. The estimate of the reward-to-go when selecting action a in state sk is the estimated ex-

pected value of the restocking fixed-route policy obtained when executing a heuristic from post-

decision state sak. As in one-step rollout, post-decision rollout selects an action that maximizes the

sum of the current-period reward plus the estimated reward-to-go.

The pre-decision rollout policy shown in Figure 2 is in the spirit of a rolling horizon procedure

and selects an action by executing a restocking fixed-route heuristic from the current state sk and

using the resulting policy to select an action. To guarantee weak improvement over a set of bench-

mark policies, we fortify each of our rollout policies (see Bertsekas et al. 1997 and Goodson et al.
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2013 for a discussion).

In the a priori-based rollout procedures of Goodson et al. (2013), the restricted policy class

does not include some actions that preemptively replenish vehicle capacities. Consequently, the a

priori-based pre-decision rollout procedure of Goodson et al. (2013) is unable to explicitly con-

sider preemptive capacity replenishment actions. To overcome this drawback, Goodson et al.

(2013) combine pre- and post-decision rollout to form a hybrid rollout policy that explicitly con-

siders restocking. In this work, we relax the a priori fixed-route policy class of Goodson et al.

(2013) via a restocking fixed-route policy class. Because this class of policies includes actions

that preemptively replenish vehicle capacities, a hybrid rollout policy is unnecessary. For instance,

consider action 1 associated with the example in Table 1 and Figure 1 of Goodson et al. (2013).

Goodson et al. (2013) show action 1, which preemptively replenishes the capacity of all vehicles,

cannot be selected by an a priori fixed-route policy. Setting the restricted policy class to restocking

fixed-route policies makes it possible for heuristics to explicitly consider such preemptive capacity

replenishment actions.

Our computational experience indicates our restocking-based one-step and post-decision roll-

out policies become computationally prohibitive to implement for moderately-sized problem in-

stances (e.g., 50 customers). In these cases, pre-decision rollout is an attractive alternative. We

also consider the static decomposition scheme of Fan et al. (2006) and the dynamic decomposition

scheme of Goodson et al. (2013) as additional methods to overcome computational roadblocks.

These decomposition schemes reduce computation by applying rollout policies to single-vehicle

problems and using the resulting policies to select actions for a multi-vehicle fleet. Both schemes

restrict the action space over which a rollout policy is executed by disallowing actions that assign

vehicles to customers outside the single-vehicle problems. The static decomposition partitions

customers into permanent groups at the beginning of the time horizon, whereas dynamic decom-

position re-partitions customers at each decision epoch via a single execution of the restocking

fixed-route heuristic. Both decomposition schemes lead to computational tractability for larger

problem instances. We refer to Goodson et al. (2013) for a more in-depth explanation of the de-

composition schemes.
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6 Computational Results

In this section, we report on computational experiments that implement the restocking-based

VRPSDL rollout policies described in §5. Our experiments examine how three factors impact

the quality of the rollout policies. First, we investigate how the sophistication of the heuristic

search mechanism and the quality of the initial policy influence rollout policy quality. Then, by

comparing our restocking-based rollout policies to the a priori-based rollout policies of Goodson

et al. (2013), we explore the effect of relaxing the restricted policy class.

In §6.1, we detail the generation of problem instances used in our experiments. In §6.2, we

describe upper bounds and benchmarks for our rollout policies. A discussion of our computational

results is provided in §6.3. We implement our procedures in C++ and execute all computational

experiments on 2.8GHz Intel Xeon processors with 12-48GB of RAM and the CentOS 5.3 operat-

ing system (we do not utilize parallel processing). The total computing time required to carry out

the experiments is 2.94 CPU years.

6.1 Problem Instances

To facilitate a comparison with the results of Goodson et al. (2013), we conduct experiments on

the same problem instances. We summarize the problem instances here and refer the reader to

Goodson et al. (2013) for a more detailed discussion. Goodson et al. (2013) modify eight problems

derived from the instances of Solomon (1987), ignoring the time windows. The problems include

R101 (randomly dispersed customers) and C101 (clustered customers), each with 25, 50, 75, and

100 customers. They vary vehicle capacity (small, medium, and large), impose route duration

limits (short, medium, and long), and vary customer demand variability (low, moderate, and high)

to yield a total of 216 problem instances. In Appendix B, we detail these values along with the

number of vehicles in each instance. For each instance, Goodson et al. (2013) randomly generate

500 realizations according to symmetric, unimodal probability distributions for customer demand

(a total of 108,000 realizations). We use these same realizations in the computational experiments

presented in this paper.
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6.2 Bounds and Benchmarks

As an upper bound on the value of an optimal policy, we sum the expected demand at all customers.

We label this bound “Expected Demand.” This is a valid upper bound for any policy because it is

impossible to serve more demand than the total available demand. For several problem instances

with short duration limits, it is impossible to reach some customers within the route duration limit

(i.e., via a singleton route from the depot, to the customer, and back to the depot). When calculating

the upper bound for these problem instances, we do not include the expected demand of impossible-

to-reach customers.

We consider three benchmarks for our rollout policies. First, we use the value of the high-

quality (static) a priori fixed-route policies obtained by Goodson et al. (2013), which do not permit

preemptive capacity replenishment. We label this benchmark “A Priori Fixed Routes.” Second,

we use the value of high-quality (static) restocking fixed-route policies within the class of policies

described in §4. We label this benchmark “Restocking Fixed Routes.” Because fixed-route poli-

cies are commonly implemented in industry, these benchmark policies serve as a practice-based

standard for our rollout policies. The electronic companion of Goodson et al. (2013) describes the

simulated annealing procedure employed to search the space of fixed-route policies, both a pri-

ori and restocking. As a third benchmark, we compare the values of our restocking-based rollout

policies to the values of the best a priori-based rollout policies obtained by Goodson et al. (2013).

We label this benchmark “A Priori-Based Rollout.” This benchmark allows us to gauge any im-

provement due to the use of the restocking fixed-route heuristic to explicitly consider preemptive

capacity replenishment.

6.3 Results and Discussion

Table 2 provides aggregate results of computational experiments exploring the effect of initial

policy choice and heuristic search mechanism on rollout policy quality. We consider the three

heuristics described in §5.1: Random, Local Search, and Variable Neighborhood Search. We con-

sider two initial policies: the benchmark policies described in §6.2 (High Quality) and a randomly
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selected policy (Low Quality).

Each portion of Table 2 displays, for a different combination of heuristic and initial policy,

average demand served and the average number of CPU seconds required to select an action at

each decision epoch. These results are aggregated over all problem parameters for 25-, 50-, 75-,

and 100-customer problem instances. Thus, each entry in Table 2 represents results for 54 of the

216 problem instances. Aggregating results in this fashion provides a concise overview of the

computational experiments. In Appendix B, we provide disaggregated results for each method.

The disaggregated results indicate consistent performance across the problem characteristics we

consider.

Tables 3 and 4 display aggregate results by heuristic and by initial policy, respectively, showing

percent improvement over the benchmark restocking fixed routes. In these tables, the choice of

benchmark is arbitrary. Comparison to a priori fixed routes or to a rollout policy would yield

similar insights.

We glean three insights from Tables 2, 3, and 4. First, beginning with a high quality initial

policy is better than beginning with a low quality initial policy. From Table 4, a low quality initial

policy leads to average improvement over restocking fixed routes of -9.5 percent. When the initial

policy is of high quality, the figure increases to 0.64 percent. Novoa and Storer (2009) reach a

similar conclusion for a single-vehicle routing problem with stochastic customer demand.

Second, regardless of the quality of the initial policy, both local search and variable neigh-

borhood search heuristics perform better than the random heuristic. From Table 3, the random

heuristic posts average improvement over restocking fixed routes of -10.98 percent, whereas the

local search and variable neighborhood heuristics perform much better with percent improvements

of -0.88 and -1.05, respectively. Notably, however, when beginning with a high quality initial

policy, Table 2 shows even the random heuristic improves over the benchmark restocking fixed

routes. This observation adds to the body of literature suggesting fortified rollout is a powerful

tool to yield high quality dynamic policies.

Third, as demonstrated in Table 3, the local search heuristic is comparable to the variable

neighborhood search heuristic. In separate computational tests, even with different random num-
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Table 3: Percent Improvement Over Restocking Fixed Routes by Heuristic
Method 25 Customers 50 Customers 75 Customers 100 Customers Average

Random Heuristic
One-Step Rollout -6.26 – – – -6.26

Post-Decision Rollout -6.96 – – – -6.96
Pre-Decision Rollout -15.51 -22.17 -19.30 -21.92 -19.72

Local Search Heuristic
One-Step Rollout -0.59 – – – -0.59

Post-Decision Rollout -0.56 – – – -0.56
Pre-Decision Rollout -2.00 -2.01 -0.92 -0.98 -1.48

Variable Neighborhood Search Heuristic
One-Step Rollout -0.66 – – – -0.66

Post-Decision Rollout -0.85 – – – -0.85
Pre-Decision Rollout -1.63 -2.11 -1.26 -1.49 -1.62

Table 4: Percent Improvement Over Restocking Fixed Routes by Quality of Initial Policy
Method 25 Customers 50 Customers 75 Customers 100 Customers Average

Low Quality Initial Policy
One-Step Rollout -6.08 – – – -6.08

Post-Decision Rollout -6.60 – – – -6.60
Pre-Decision Rollout -13.58 -18.18 -14.74 -16.75 -15.81

High Quality Initial Policy
One-Step Rollout 0.96 – – – 0.96

Post-Decision Rollout 0.91 – – – 0.91
Pre-Decision Rollout 0.63 0.60 0.62 0.73 0.64
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ber streams, 95 percent of the time variable neighborhood search yields restocking fixed-route

policies at least as good as the policies returned by the local search heuristic. Despite the ability

of the variable neighborhood search heuristic to potentially identify better restocking fixed-route

policies than the local search heuristic, these higher quality heuristic policies do not to lead to im-

proved dynamic solutions. These results suggest the model error associated with a restricted policy

class may lead to the phenomenon that finding a better policy within the restricted class does not

result in a better policy for the original problem. Thus, for the VRPSDL, efforts to identify better

dynamic solutions are unlikely to benefit from more sophisticated heuristic search mechanisms

for restocking fixed-route policies. Instead, we believe a more promising avenue is to focus on

restricted policy classes that more accurately approximate future rewards, e.g., policy classes per-

mitting cooperation among vehicles.

Having identified a high-quality initial policy and a local search heuristic as important ingre-

dients for a rollout policy, Table 5 provides aggregate results of computational experiments com-

paring our restocking-based rollout policies to the a priori-based rollout policies of Goodson et al.

(2013). Rollout policies in these experiments begin with the high quality initial fixed-route poli-

cies described in §6.2 and employ the local search heuristic of §5.1. Table 5 is structured similar to

Table 2 – results are aggregated over all problem parameters for 25-, 50-, 75-, and 100-customer

problem instances. In Appendix B, we provide disaggregated results for each method. The disag-

gregated results indicate consistent performance across the problem characteristics we consider.

The first portion of Table 5 displays the benchmarks and bounds described in §6.2. The remain-

ing portions of Table 5 display results for our rollout policies without decomposition, with static

decomposition, and with dynamic decomposition. The average demand served values reported for

“A Priori Fixed Routes” are averages of the true expected demand served (using the analytical eval-

uation method of Goodson et al. 2013) across 54 problem instances. The average demand served

values reported for “Expected Demand” are the average of the expected demands across 54 prob-

lem instances. Average demand served values for the remaining methods are averages of estimates

of the expected demand served for each of 500 realizations in each of 54 problem instances. We

note that we list the per epoch computation time for “Restocking Fixed Routes” as 0.00 for all
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Table 6: Percent Improvement Over Restocking Fixed Routes
Method 25 Customers 50 Customers 75 Customers 100 Customers Average

No Decomposition
One-Step Rollout 1.28 – – – 1.28

Post-Decision Rollout 1.27 – – – 1.27
Pre-Decision Rollout 0.98 1.02 1.09 1.31 1.10

Dynamic Decomposition
One-Step Rollout 0.97 1.02 1.10 1.32 1.10

Post-Decision Rollout 1.00 1.02 1.10 1.32 1.11
Pre-Decision Rollout 0.97 1.01 1.09 1.31 1.10

cases. This time indicates some computation may be required at an epoch, notably the evaluation

of equations (7) and (8). However, in our experiments, the time was insignificant.

Although the average per epoch computation times reported in Table 5 indicate shorter CPU

times for restocking-based rollout than for a priori-based rollout, these times are not directly com-

parable due to differences in code architecture that handicap the a priori-based rollout implemen-

tation of Goodson et al. (2013). We also note the restocking-based one-step and post-decision roll-

out policies are computationally prohibitive to implement for larger problems because the size of

the auxiliary dynamic programs required to evaluate restocking policies grows exponentially with

problem size. Thus, making real-time dynamic routing decision in large-scale operations using our

framework can only be accomplished via pre-decision rollout or via rollout with decomposition.

In the latter case, dynamic decomposition yields better results than static decomposition.

Tables 6, 7, and 8 compare the performance of one-step, post-decision, and pre-decision rollout,

with dynamic decomposition and without decomposition, to methods from the literature. Specif-

ically, we compare our rollout policies using a restocking heuristic to restocking fixed routes in

Table 6, to a priori-based rollout in Table 7, and to restocking-based pre-decision rollout without

decomposition in Table 8. We omit a comparison to rollout with static decomposition because

rollout with dynamic decomposition yields superior performance. Each entry in these tables is the

percent improvement over the corresponding method from the literature. As in Table 5, the values

in Tables 6, 7, and 8 are aggregated over all problem parameters for 25-, 50-, 75-, and 100-customer

problems.

The results in Table 6 demonstrate that a rollout policy, resulting from re-application of the re-
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Table 7: Percent Improvement Over A Priori-Based Rollout
Method 25 Customers 50 Customers 75 Customers 100 Customers Average

No Decomposition
One-Step Rollout 0.59 – – – 0.59

Post-Decision Rollout 0.58 – – – 0.58
Pre-Decision Rollout 0.29 0.37 0.49 0.55 0.42

Dynamic Decomposition
One-Step Rollout 0.28 0.37 0.50 0.56 0.43

Post-Decision Rollout 0.31 0.37 0.51 0.56 0.44
Pre-Decision Rollout 0.29 0.36 0.49 0.55 0.42

Table 8: Percent Improvement Over Pre-Decision Rollout Without Decomposition
Method 25 Customers 50 Customers 75 Customers 100 Customers Average

No Decomposition
One-Step Rollout 0.30 – – – 0.30

Post-Decision Rollout 0.29 – – – 0.29

Dynamic Decomposition
One-Step Rollout 0.00 0.00 0.01 0.01 0.00

Post-Decision Rollout 0.02 0.00 0.01 0.01 0.01
Pre-Decision Rollout 0.00 -0.01 0.00 0.00 0.00

stocking heuristic at each state, improves on the performance of the statically-implemented bench-

mark restocking fixed routes. On average, the rollout policies improve on the restocking fixed

routes by 1.27 percent.

Table 7 demonstrates the improved performance of restocking-based rollout over a priori-based

rollout policies. The best performance is achieved by one-step and post-decision rollout policies

without decomposition. On average, these two methods improve upon the performance of a priori-

based rollout by 0.58 percent. For problem instances with more than 25 customers, restocking-

based pre-decision rollout is a computationally attractive alternative, on average improving upon

the performance of a priori-based rollout by 0.42 percent. Further, restocking-based pre-decision

rollout yields superior performance over all the a priori-based rollout procedures considered by

Goodson et al. (2013) on problem instances with as many as 100 customers. Restocking-based

one-step and post-decision rollout with dynamic decomposition offer comparable performance.

While demonstrating the ability of restocking-based rollout to outperform a-priori-based roll-

out, the results offer an additional conclusion. As noted previously, an optimal restocking policy
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along a fixed route is guaranteed to weakly improve upon the performance of an a priori policy

along the same fixed route. Applied in a rollout procedure, this means a restocking policy offers

a better estimate of future rewards than the a priori policy along the same fixed route. Although

there is no guarantee this improved estimate leads to better action selection, Table 7 suggests bet-

ter estimates matter, at least for the VRPSDL. Because our restocking heuristic employs the same

local search heuristic of Goodson et al. (2013), improvements over a priori-based rollout are due

to the relaxation of the restricted policy class permitting preemptive capacity replenishment.

Table 8 demonstrates the lookahead mechanism of one-step and post-decision rollout is ben-

eficial, improving on the pre-decision restocking-based rollout by 0.3 and 0.29 percent, respec-

tively. When using the restocking heuristic to estimate the reward-to-go, however, one-step and

post-decision rollout are limited to problems with at most 25 customers. Regardless, these results

demonstrate that applying the restocking heuristic in a rollout algorithm improves the performance

of the heuristic. In contrast to the results for a priori-based rollout in Goodson et al. (2013),

Table 8 indicates dynamic decomposition combined with restocking-based rollout policies does

not yield significant performance improvement over the corresponding pre-decision rollout policy.

This result suggests the improved estimates of the restocking heuristic are more important than the

decomposition’s ability to facilitate post-decision and one-step lookahead.

We conclude this section with a brief discussion of the statistical significance of our results.

Table 9 presents six 90-percent paired confidence intervals. The first set of three intervals com-

pare restocking-based rollout with a priori-based rollout and the second set of three intervals make

comparisons among restocking-based rollout methods. In each case, the confidence interval is on

the mean difference of the demand served by the first method less the demand served by the second

method. All problem parameters are considered in aggregate and rollout policies begin with a high

quality initial policy and utilize the local search heuristic. Because the first three confidence inter-

vals exclude zero, we conclude relaxation of the a priori fixed-route policy class to the restocking

fixed-route policy class results in a statistically significant improvement. Intervals four through

six suggest rollout based on the restocking fixed-route policy class benefits from rollout decision

rules that look further ahead. In particular, both restocking-based one-step and post-decision roll-
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out yield statistically significant improvement over restocking-based pre-decision rollout. Because

zero is included at the edge of the fourth interval, we conclude at the 90 percent confidence level

that restocking-based one-step and post-decision rollout yield comparable performance.

Table 9: Confidence Intervals on Rollout Performance
Rollout Method Comparison 90-Percent Paired Confidence Interval

One-Step Restocking vs. One-Step A Priori [1.80, 1.99]
Post-Decision Restocking vs. Post-Decision A Priori [2.17, 2.36]

Pre-Decision Restocking vs. Pre-Decision A Priori [6.61, 6.79]
One-Step Restocking vs. Post-Decision Restocking [0.00, 0.11]
One-Step Restocking vs. Pre-Decision Restocking [0.91, 1.04]

Post-Decision Restocking vs. Pre-Decision Restocking [0.86, 0.99]

7 Conclusion

We develop restocking-based rollout policies to make dynamic routing decisions for the vehicle

routing problem with stochastic demand and duration limits. Our contributions center around im-

proving the heuristic component of the rollout policies developed by Goodson et al. (2013). To

achieve this, we relax the a priori fixed-route policy class of Goodson et al. (2013) by consid-

ering restocking fixed-route policies that permit preemptive capacity replenishment. We develop

a sampling-based procedure to estimate the value of a restocking fixed-route policy. Embedding

this procedure within rollout policies, we demonstrate benefits of restocking-based rollout policies

versus applying a restocking fixed route policy generated at the beginning of the horizon. We also

show improvement over the results of Goodson et al. (2013). These results demonstrate that, for

the VRPSDL, there is value in improving the estimate of the reward-to-go when implementing a

rollout algorithm. We also identify investigation of additional restricted policy classes as a more

promising future research direction than seeking to improve the heuristic search component of the

rollout policy. Because of the nature of the heuristic estimates in this paper, the improvement

results could only be demonstrated computationally. An interesting direction for future research

would be to consider the circumstances in which an improved estimate of future rewards guarantees

improved rollout policies.
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A Proofs

A.1 Proof of Proposition 1

We first prove property (i). Since Zc′(s̃c′) < xvm
c′

, we have one of two cases. In the first case,

Zc′(s̃c′) = 0, implying by equation (5) that Avm
c′

+ t(vmc′ , 0) > L. By the triangle inequality, this

implies that for any Avm
c′+1

that may result from equations (3) or (4), Avm
c′+1

+ t(vmc′+1, 0) > L.

Thus, Zc′+1(s̃c′+1) = 0. The same argument applies for c = c′ + 2, . . . , Cm. In the second case,

0 < Zc′(s̃c′) < xvm
c′

, implying by equation (5) that b(L− t(vmc′ , 0)−Avm
c′

)/(t(vmc′ , 0)+ t(0, vmc′ ))c <

b(xvm
c′
− Qvm

c′
)/Qc, meaning the number of replenishments required to satisfy demand in full is

greater than the number of replenishments possible before violating the route duration limit L. Let

t′ be the time at which demand at customer vmc′ is served in full. It must be that t′ + t(vmc′ , 0) > L.

Then, by the triangle inequality, t′+ t(vmc′ , v
m
c′+1) + t(vmc′+1, 0) > L and t′+ t(vmc′ , 0) + t(0, vmc′+1) +

t(vmc′+1, 0) > L, meaning that Avm
c′+1

+ t(vmc′+1, 0) > L regardless of the action selected at decision

epoch c′. Thus, Zc′+1(s̃c′+1) = 0. Then, using the arguments presented for the first case, Zc(s̃c) = 0

for c = c′ + 2, . . . , Cm.

We prove property (ii) by contradiction. Suppose there exists some c ∈ {1, 2, . . . , c′ − 1} such

that Zc(s̃c) < xvmc . Then, by property (i), Zj(s̃j) = 0 for j = c + 1, c + 2, . . . , Cm. Yet, by

assumption, Zj(s̃j) = xvmj for j = 1, 2, . . . , c′ − 1.

A.2 Proof of Proposition 2

The proof is by induction. First, note that if ṼCm(s̃Cm ; vm, x) < xvmCm
, then Ṽc(s̃Cm ; vm, x) in-

creases as QvmCm
increases and as AvmCm

decreases. If ṼCm(s̃Cm ; vm, x) = xvmCm
, then ṼCm(s̃Cm)

is constant as it is bounded above by xvmCm
. Thus, the result holds for stage Cm. Assume the

result holds for stages Cm − 1, Cm − 2, . . . , c + 1. At stage c, it follows from equation (5) that

Zc(s̃c) increases as Qvmc increases and as Avmc decreases. As in stage Cm, Zc(s̃c) is constant if

Zc(s̃c) = xvmc . By the induction hypothesis, the reward-to-go, Ṽc+1(s̃c+1; vm, x), also increases

as Qvmc increases and as Avmc decreases. Because the value function at stage c is the sum of two

functions that increase as Qvmc increases and as Avmc decreases, the result holds at stage c.
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B Disaggregated Results of Computational Results

In this appendix, we report the disaggregated results of our computational experiments. Table 10

details problem instance parameters. Table 11 displays the expected demand served by the bench-

mark restocking fixed-route policies. Table 12 shows the expected demand for each problem in-

stance; expected demand does not change with variability in customer demand. Tables 13, 14, and

15 depict disaggregated results for our rollout policies without decomposition. Tables 16, 17, and

18 present disaggregated results for our rollout policies with static decomposition. Tables 19, 20,

and 21 display disaggregated results for our rollout policies with dynamic decomposition. Table 22

is similar to Table 5, except Table 22 displays the average number of CPU seconds required to exe-

cute each method for an entire instance; Table 5 only presents the average number of CPU seconds

per decision epoch. Tables 23-37 display disaggregate results for our second set of computational

experiments with various heuristic mechanisms and initial policies. In Table 11, Tables 13-21,

and Tables 23-37, each entry is the average demand served by the respective method across 500

realizations of the problem instance. The values in Table 12 are exact calculations.

Table 10: Problem Parameters
Duration Limits Capacities

Problem Vehicles (short, medium, long) (small, medium, large)

R101 (25) 4 (85.575, 142.625, 199.675) (25, 50, 75)
C101 (25) 5 (67.875, 113.125, 158.375) (25, 50, 75)
R101 (50) 8 (89.475, 149.125, 208.775) (25, 50, 75)
C101 (50) 9 (67.875, 113.125, 158.375) (25, 50, 75)
R101 (75) 11 (103.05, 171.75, 240.45) (25, 50, 75)
C101 (75) 14 (99.45, 165.75, 232.05) (25, 50, 75)
R101 (100) 15 (94.875, 158.125, 221.375) (25, 50, 75)
C101 (100) 19 (95.325, 158.875, 222.425) (25, 50, 75)
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Table 11: Average Demand Served by Restocking Fixed Routes
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.15 221.93 278.66 236.90 325.38 332.01 308.01 331.98 332.04
C101 (25) 222.21 298.74 320.02 317.07 454.56 459.44 391.09 459.16 459.64
R101 (50) 354.92 501.20 632.47 520.38 716.59 721.04 661.69 720.78 721.15
C101 (50) 336.73 541.30 606.40 543.51 801.22 859.28 676.47 858.92 859.87
R101 (75) 593.76 831.77 1010.24 837.70 1077.39 1078.20 1034.26 1076.78 1078.23
C101 (75) 756.57 1097.16 1294.36 1067.83 1357.99 1359.55 1299.86 1359.45 1360.05

R101 (100) 803.42 1146.33 1376.46 1140.98 1456.67 1458.09 1383.68 1455.94 1458.47
C101 (100) 918.79 1349.53 1648.26 1304.85 1801.67 1810.42 1629.44 1808.90 1810.35

Moderate Variability
R101 (25) 147.51 215.87 273.03 223.22 312.90 330.76 287.98 331.09 331.61
C101 (25) 207.58 292.59 319.06 300.68 425.49 457.50 372.25 455.67 459.01
R101 (50) 329.95 486.24 610.00 494.30 690.85 719.14 619.45 718.78 720.22
C101 (50) 322.04 505.71 581.77 507.68 764.40 846.26 644.36 850.36 856.92
R101 (75) 558.08 791.92 962.29 793.13 1059.74 1075.92 975.12 1074.56 1076.54
C101 (75) 711.85 1046.57 1252.74 1015.24 1334.17 1356.72 1228.61 1357.86 1359.02

R101 (100) 755.10 1094.05 1326.28 1078.36 1435.19 1455.73 1313.87 1454.19 1455.65
C101 (100) 842.98 1292.65 1580.31 1228.41 1748.60 1805.63 1539.07 1804.63 1808.80

High Variability
R101 (25) 140.81 202.59 261.95 208.50 291.96 328.16 270.53 328.45 331.53
C101 (25) 184.90 272.76 306.58 280.31 395.29 448.86 347.76 447.75 458.80
R101 (50) 309.47 458.77 571.84 461.48 651.86 712.95 581.60 712.59 716.59
C101 (50) 303.09 474.69 559.07 469.85 694.75 818.23 602.67 820.53 854.34
R101 (75) 508.81 752.50 902.11 747.06 1024.07 1070.85 923.77 1070.62 1075.16
C101 (75) 656.07 978.99 1178.08 951.21 1290.25 1355.54 1144.80 1355.09 1359.74

R101 (100) 697.32 1020.06 1240.32 1006.87 1379.15 1449.18 1235.95 1447.70 1450.07
C101 (100) 778.98 1207.66 1481.80 1149.89 1634.19 1792.21 1439.30 1786.81 1803.95

Table 12: Expected Demand
Duration short medium long

Capacity small medium large small medium large small medium large

R101 (25) 332.00 332.00 332.00 332.00 332.00 332.00 332.00 332.00 332.00

C101 (25) 320.00 320.00 320.00 460.00 460.00 460.00 460.00 460.00 460.00

R101 (50) 721.00 721.00 721.00 721.00 721.00 721.00 721.00 721.00 721.00

C101 (50) 630.00 630.00 630.00 860.00 860.00 860.00 860.00 860.00 860.00

R101 (75) 1079.00 1079.00 1079.00 1079.00 1079.00 1079.00 1079.00 1079.00 1079.00

C101 (75) 1300.00 1300.00 1300.00 1360.00 1360.00 1360.00 1360.00 1360.00 1360.00

R101 (100) 1438.00 1438.00 1438.00 1458.00 1458.00 1458.00 1458.00 1458.00 1458.00

C101 (100) 1690.00 1690.00 1690.00 1810.00 1810.00 1810.00 1810.00 1810.00 1810.00

Table 13: Average Demand Served by One-Step Rollout without Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.26 221.97 278.66 238.59 324.85 332.00 313.31 331.97 331.68
C101 (25) 223.95 299.10 320.06 317.41 455.14 459.41 391.97 459.38 459.63

Moderate Variability
R101 (25) 150.00 217.63 273.27 228.73 315.50 331.00 297.36 331.36 331.51
C101 (25) 217.11 293.65 319.50 308.03 434.09 458.03 383.97 456.92 458.96

High Variability
R101 (25) 144.78 209.63 262.09 216.37 298.84 329.59 282.83 331.35 331.56
C101 (25) 206.19 281.06 312.30 299.57 406.90 454.30 374.02 453.56 459.47

42



Table 14: Average Demand Served by Post-Decision Rollout without Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.15 221.98 278.66 238.43 326.13 331.96 313.25 331.99 331.99
C101 (25) 223.95 298.81 320.06 317.55 455.22 459.53 391.99 459.16 459.51

Moderate Variability
R101 (25) 150.05 217.25 273.25 228.64 315.76 331.25 297.70 331.46 331.44
C101 (25) 217.42 293.51 319.60 309.09 434.16 457.82 383.98 456.40 459.03

High Variability
R101 (25) 144.24 209.61 262.10 216.28 298.55 329.57 282.73 331.26 331.60
C101 (25) 204.12 280.42 313.28 298.80 406.95 453.89 372.92 453.72 459.44

Table 15: Average Demand Served by Pre-Decision Rollout without Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.26 221.93 278.66 237.90 325.84 332.01 311.81 332.02 332.04
C101 (25) 223.96 299.12 320.02 317.33 455.06 459.64 391.46 459.20 459.64
R101 (50) 360.36 501.27 633.27 523.93 716.84 721.05 665.88 721.12 721.15
C101 (50) 339.03 541.44 606.72 545.14 801.94 859.51 679.49 859.30 859.90
R101 (75) 595.10 833.97 1011.36 841.58 1077.78 1078.36 1038.53 1078.33 1078.40
C101 (75) 760.68 1099.12 1296.29 1073.93 1359.58 1359.95 1302.97 1360.04 1360.05

R101 (100) 809.01 1147.16 1378.49 1151.03 1457.79 1458.51 1394.95 1458.51 1458.60
C101 (100) 923.41 1351.02 1653.20 1307.92 1803.54 1810.80 1641.42 1810.73 1810.84

Moderate Variability
R101 (25) 149.56 217.19 273.16 226.34 314.28 331.14 295.52 331.55 331.61
C101 (25) 216.41 293.81 319.37 306.84 432.93 457.81 379.98 457.14 459.23
R101 (50) 334.09 488.27 611.12 502.21 695.38 720.29 636.21 720.39 720.48
C101 (50) 325.95 511.14 582.92 526.61 769.22 849.40 661.69 854.21 858.51
R101 (75) 566.23 794.36 966.11 808.58 1067.28 1077.22 997.48 1076.89 1077.49
C101 (75) 733.76 1057.77 1263.94 1040.89 1343.56 1357.70 1262.63 1360.01 1359.30

R101 (100) 772.73 1104.63 1329.75 1104.23 1443.13 1457.21 1348.52 1457.17 1457.35
C101 (100) 874.44 1306.45 1602.74 1275.16 1772.34 1808.53 1588.98 1809.20 1809.90

High Variability
R101 (25) 142.26 204.10 262.11 215.13 297.57 329.66 280.96 331.29 331.70
C101 (25) 197.18 280.90 310.75 293.78 402.11 454.25 369.23 453.41 459.42
R101 (50) 318.30 465.63 577.69 482.19 662.14 715.88 611.38 715.40 716.93
C101 (50) 314.26 481.58 567.60 497.25 714.24 823.78 637.02 838.74 854.95
R101 (75) 527.42 760.55 912.62 775.51 1043.07 1075.38 967.65 1075.26 1075.63
C101 (75) 698.65 1014.63 1194.86 1004.76 1323.92 1359.87 1219.95 1358.94 1360.58

R101 (100) 726.77 1043.24 1255.35 1055.71 1410.60 1452.19 1308.35 1452.35 1452.86
C101 (100) 823.89 1240.74 1519.21 1228.86 1690.16 1800.91 1540.75 1803.63 1806.43
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Table 16: Average Demand Served by One-Step Rollout with Static Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.15 221.92 278.66 237.48 324.61 332.02 312.44 332.00 332.04
C101 (25) 223.21 299.03 320.02 317.15 454.97 459.62 391.12 459.16 458.63
R101 (50) 361.06 501.20 632.47 524.79 716.61 720.82 665.96 720.61 721.12
C101 (50) 337.89 541.34 606.40 544.09 801.50 859.40 677.36 858.79 859.79
R101 (75) 595.27 833.98 1010.95 841.91 1077.74 1078.25 1038.58 1078.05 1078.32
C101 (75) 759.02 1099.32 1293.81 1069.68 1359.04 1359.75 1300.23 1359.84 1359.39

R101 (100) 808.56 1146.77 1376.57 1151.22 1457.41 1458.44 1390.46 1457.07 1457.70
C101 (100) 921.66 1351.45 1648.26 1305.83 1802.51 1810.70 1633.05 1808.60 1810.75

Moderate Variability
R101 (25) 149.14 216.45 273.03 225.74 313.84 331.36 291.35 331.38 331.57
C101 (25) 213.35 293.13 319.30 301.30 428.45 457.56 372.77 455.80 458.79
R101 (50) 330.76 487.71 610.45 497.77 692.82 719.85 627.05 719.11 720.21
C101 (50) 322.62 506.19 581.84 512.61 765.82 846.61 650.12 850.88 858.04
R101 (75) 559.28 793.63 964.07 796.98 1056.98 1076.67 979.45 1075.99 1077.09
C101 (75) 717.12 1050.76 1255.85 1018.50 1333.84 1357.71 1230.97 1358.42 1359.18

R101 (100) 762.49 1101.67 1327.59 1083.46 1436.94 1454.81 1322.92 1455.44 1456.10
C101 (100) 848.78 1296.81 1585.45 1236.61 1749.06 1806.95 1542.51 1806.46 1808.22

High Variability
R101 (25) 141.72 202.59 261.95 211.48 295.84 329.49 273.91 330.99 331.70
C101 (25) 184.92 273.26 306.92 282.41 396.96 449.91 350.63 447.88 458.88
R101 (50) 311.61 460.42 573.24 467.87 652.49 713.76 587.35 713.44 716.50
C101 (50) 303.60 474.69 559.41 472.80 695.75 818.90 605.78 820.74 854.02
R101 (75) 511.15 755.01 902.86 750.05 1025.99 1074.12 927.64 1073.57 1075.21
C101 (75) 659.67 980.17 1177.51 952.99 1292.50 1357.29 1147.05 1356.11 1359.84

R101 (100) 703.45 1024.66 1245.35 1013.06 1381.31 1449.82 1242.80 1449.52 1451.27
C101 (100) 782.55 1212.71 1482.56 1155.57 1637.88 1794.12 1445.07 1789.60 1805.35

Table 17: Average Demand Served by Post-Decision Rollout with Static Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.15 221.93 278.66 237.48 325.70 332.02 312.44 331.94 332.04
C101 (25) 223.21 299.03 320.02 317.15 454.98 459.58 391.12 459.12 458.57
R101 (50) 361.06 501.20 632.47 524.79 716.61 720.82 665.96 720.99 720.62
C101 (50) 337.89 541.34 606.40 544.09 801.38 859.50 677.37 859.02 859.76
R101 (75) 595.27 833.98 1010.95 842.56 1077.66 1078.29 1038.79 1078.15 1078.27
C101 (75) 759.02 1099.32 1293.78 1069.94 1359.09 1359.98 1300.37 1358.44 1360.03

R101 (100) 808.56 1146.77 1376.60 1151.18 1457.37 1458.16 1390.30 1457.50 1458.49
C101 (100) 921.66 1351.45 1648.07 1305.73 1802.29 1810.66 1633.37 1808.98 1810.75

Moderate Variability
R101 (25) 149.14 216.46 273.03 225.74 313.84 331.36 291.35 331.29 331.61
C101 (25) 213.35 293.13 319.30 301.99 428.41 457.56 372.73 456.17 458.83
R101 (50) 330.80 487.55 610.44 498.23 692.82 720.00 627.06 719.60 720.09
C101 (50) 322.62 506.20 581.84 512.55 766.04 846.51 650.26 851.05 858.06
R101 (75) 559.30 793.62 963.81 797.00 1060.46 1076.91 979.57 1075.92 1077.17
C101 (75) 716.97 1050.79 1256.26 1018.58 1334.31 1357.44 1231.02 1358.52 1358.87

R101 (100) 762.46 1101.73 1327.62 1083.40 1437.01 1454.85 1322.90 1456.24 1456.87
C101 (100) 848.76 1297.51 1585.52 1236.66 1749.13 1806.78 1543.16 1805.93 1808.94

High Variability
R101 (25) 141.61 202.59 261.95 211.53 295.83 329.48 274.35 330.83 331.65
C101 (25) 184.92 273.26 306.66 282.58 396.98 449.91 350.04 447.94 458.71
R101 (50) 311.61 460.05 573.25 468.02 652.28 713.81 587.48 713.93 716.66
C101 (50) 303.61 474.69 559.41 473.06 695.80 818.85 605.93 821.91 854.47
R101 (75) 511.88 755.04 902.75 750.08 1026.37 1073.19 927.87 1074.06 1075.40
C101 (75) 660.28 980.08 1177.96 952.96 1292.65 1357.15 1147.23 1355.91 1359.87

R101 (100) 703.36 1024.52 1245.39 1013.38 1381.14 1450.04 1242.27 1449.50 1452.09
C101 (100) 782.91 1213.56 1482.57 1155.47 1638.17 1794.57 1445.17 1789.79 1805.59
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Table 18: Average Demand Served by Pre-Decision Rollout with Static Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.15 221.93 278.66 236.90 325.38 332.01 308.01 331.98 332.04
C101 (25) 222.21 298.74 320.02 317.07 454.56 459.44 391.09 459.16 459.64
R101 (50) 354.92 501.20 632.47 520.38 716.59 721.04 661.69 720.78 721.15
C101 (50) 336.73 541.30 606.40 543.51 801.22 859.28 676.47 858.92 859.87
R101 (75) 593.76 831.77 1010.24 837.70 1077.39 1078.20 1034.26 1076.78 1078.23
C101 (75) 756.57 1097.16 1294.36 1067.83 1357.99 1359.55 1299.86 1359.45 1360.05

R101 (100) 803.42 1146.33 1376.46 1140.98 1456.67 1458.09 1383.69 1455.94 1458.47
C101 (100) 918.79 1349.53 1648.26 1304.85 1801.67 1810.42 1629.44 1808.90 1810.35

Moderate Variability
R101 (25) 147.51 215.87 273.03 223.22 312.90 330.76 287.98 331.09 331.61
C101 (25) 207.58 292.59 319.06 300.68 425.49 457.50 372.25 455.67 459.01
R101 (50) 329.95 486.24 610.00 494.30 690.85 719.14 619.45 718.78 720.22
C101 (50) 322.04 505.71 581.77 507.68 764.40 846.26 644.36 850.36 856.92
R101 (75) 558.08 791.92 962.29 793.13 1059.74 1075.92 975.12 1074.56 1076.54
C101 (75) 711.85 1046.57 1252.74 1015.24 1334.17 1356.72 1228.61 1357.86 1359.02

R101 (100) 755.10 1094.05 1326.28 1078.36 1435.19 1455.73 1313.87 1454.19 1455.65
C101 (100) 842.98 1292.65 1580.31 1228.41 1748.60 1805.63 1539.07 1804.63 1808.80

High Variability
R101 (25) 140.81 202.59 261.95 208.50 291.96 328.16 270.53 328.45 331.53
C101 (25) 184.90 272.76 306.58 280.31 395.29 448.86 347.76 447.75 458.80
R101 (50) 309.47 458.77 571.84 461.48 651.86 712.95 581.60 712.59 716.59
C101 (50) 303.09 474.69 559.07 469.85 694.75 818.23 602.67 820.53 854.34
R101 (75) 508.81 752.50 902.11 747.06 1024.07 1070.85 923.77 1070.62 1075.17
C101 (75) 656.07 978.99 1178.08 951.21 1290.25 1355.54 1144.80 1355.09 1359.74

R101 (100) 697.32 1020.06 1240.32 1006.87 1379.15 1449.18 1235.95 1447.70 1450.07
C101 (100) 778.98 1207.66 1481.80 1149.89 1634.19 1792.21 1439.30 1786.81 1803.95

Table 19: Average Demand Served by One-Step Rollout with Dynamic Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.26 221.93 278.66 237.91 324.65 332.00 312.06 332.01 332.04
C101 (25) 223.96 299.13 320.02 317.34 455.06 459.39 391.48 459.22 459.64
R101 (50) 360.62 501.27 633.27 524.58 717.17 720.82 665.42 720.64 721.09
C101 (50) 338.90 541.54 606.70 545.29 802.21 859.47 679.27 859.24 859.88
R101 (75) 595.93 833.95 1011.37 842.86 1077.53 1078.36 1038.96 1078.29 1078.41
C101 (75) 760.24 1099.10 1296.55 1073.61 1358.71 1359.95 1302.98 1360.04 1359.87

R101 (100) 809.26 1146.99 1378.23 1152.07 1457.97 1458.49 1395.44 1458.42 1458.47
C101 (100) 924.38 1351.11 1652.68 1308.30 1802.98 1810.80 1641.20 1809.85 1810.84

Moderate Variability
R101 (25) 149.49 217.08 273.16 226.86 314.36 331.17 295.05 331.52 331.57
C101 (25) 215.94 293.74 319.37 306.74 433.03 457.86 380.40 457.17 459.14
R101 (50) 334.04 488.17 611.01 502.73 695.75 720.12 637.41 720.33 720.45
C101 (50) 326.30 510.72 583.03 526.61 769.64 849.31 662.60 854.34 858.48
R101 (75) 566.63 794.68 966.15 808.57 1066.94 1077.20 998.59 1076.89 1077.51
C101 (75) 733.12 1057.90 1262.07 1041.38 1343.45 1358.43 1262.33 1359.95 1359.28

R101 (100) 773.95 1104.09 1329.71 1104.91 1443.21 1457.12 1350.17 1456.78 1457.26
C101 (100) 874.35 1307.04 1604.17 1276.08 1771.71 1808.70 1588.60 1809.21 1809.32

High Variability
R101 (25) 142.77 204.63 262.10 215.22 297.58 329.67 280.81 331.21 331.71
C101 (25) 197.51 279.81 310.26 294.43 402.09 454.42 370.05 453.42 459.13
R101 (50) 318.58 465.76 577.74 481.49 661.06 715.64 611.88 715.34 716.78
C101 (50) 314.75 480.92 566.90 497.17 714.13 823.67 636.53 838.27 854.87
R101 (75) 527.53 760.43 913.53 776.31 1043.61 1075.30 967.97 1075.28 1075.60
C101 (75) 698.54 1013.12 1196.75 1005.66 1323.96 1359.76 1220.91 1358.80 1360.57

R101 (100) 728.58 1043.41 1261.03 1053.92 1410.86 1451.80 1309.60 1452.25 1452.65
C101 (100) 822.45 1239.57 1520.27 1227.91 1688.28 1800.60 1540.32 1803.11 1806.46
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Table 20: Average Demand Served by Post-Decision Rollout with Dynamic Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.26 221.93 278.66 237.91 325.84 332.00 311.63 331.99 332.04
C101 (25) 223.96 299.13 320.02 317.38 455.06 459.63 391.46 459.18 459.64
R101 (50) 359.02 501.27 633.27 524.66 717.17 720.83 665.88 721.07 721.15
C101 (50) 339.09 541.50 606.69 545.36 801.51 859.55 679.14 859.33 859.92
R101 (75) 595.84 833.94 1011.38 842.77 1077.51 1078.40 1039.19 1078.35 1078.39
C101 (75) 760.51 1099.63 1296.00 1073.95 1359.68 1359.98 1303.15 1360.04 1360.05

R101 (100) 809.53 1146.83 1378.29 1151.75 1457.83 1458.52 1394.86 1458.23 1458.60
C101 (100) 923.33 1351.62 1652.40 1308.04 1803.19 1810.77 1641.75 1810.08 1810.84

Moderate Variability
R101 (25) 149.61 217.27 273.13 226.70 314.25 331.26 295.36 331.50 331.61
C101 (25) 216.23 293.76 319.37 307.00 433.40 457.77 380.83 456.67 459.10
R101 (50) 334.25 487.99 611.33 503.13 695.85 720.29 636.56 720.38 720.39
C101 (50) 326.39 510.74 583.04 526.77 769.51 849.54 661.61 854.37 858.52
R101 (75) 566.48 794.78 965.82 809.52 1067.65 1077.28 998.05 1076.97 1077.52
C101 (75) 733.84 1057.77 1262.30 1040.91 1343.26 1357.55 1263.19 1359.97 1359.30

R101 (100) 774.60 1104.69 1329.85 1105.01 1442.80 1457.00 1349.28 1457.16 1457.33
C101 (100) 874.77 1307.01 1603.55 1276.48 1771.09 1808.20 1589.01 1808.83 1809.89

High Variability
R101 (25) 142.74 204.30 262.06 214.86 297.55 329.60 280.97 331.21 331.71
C101 (25) 197.82 281.34 310.66 293.88 402.64 454.85 369.72 453.37 459.39
R101 (50) 318.41 465.72 577.62 482.15 661.29 715.81 611.32 715.35 716.91
C101 (50) 314.61 481.46 567.79 497.38 713.01 824.45 636.96 838.04 854.95
R101 (75) 528.21 760.66 913.60 776.42 1043.18 1075.35 968.30 1075.28 1075.59
C101 (75) 698.57 1013.16 1196.04 1005.96 1323.39 1359.85 1220.65 1358.81 1360.58

R101 (100) 727.21 1043.20 1258.31 1056.54 1412.06 1451.90 1309.02 1452.23 1452.83
C101 (100) 823.56 1239.84 1518.80 1230.54 1689.25 1800.98 1541.30 1803.36 1806.46

Table 21: Average Demand Served by Pre-Decision Rollout with Dynamic Decomposition
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.26 221.93 278.66 237.90 325.84 332.01 311.75 332.02 332.04
C101 (25) 223.96 299.13 320.02 317.46 455.06 459.63 391.47 459.22 459.64
R101 (50) 359.21 501.27 633.27 524.09 716.86 721.05 665.75 721.08 721.15
C101 (50) 339.47 541.44 606.69 545.18 801.94 859.51 679.33 859.31 859.90
R101 (75) 595.51 833.92 1011.44 841.94 1077.82 1078.35 1038.42 1078.28 1078.41
C101 (75) 760.65 1099.16 1296.11 1073.93 1359.56 1359.95 1302.97 1360.04 1360.05

R101 (100) 809.33 1147.04 1378.25 1151.18 1457.89 1458.50 1395.29 1458.53 1458.60
C101 (100) 923.63 1351.49 1653.11 1307.86 1803.39 1810.77 1642.03 1810.73 1810.84

Moderate Variability
R101 (25) 149.39 216.77 273.16 226.17 314.29 331.39 295.31 331.54 331.61
C101 (25) 216.38 293.81 319.35 306.87 433.79 457.76 379.54 457.04 459.23
R101 (50) 333.92 488.15 611.06 502.65 696.01 720.36 635.98 720.39 720.47
C101 (50) 326.27 511.21 582.85 526.21 769.39 849.37 661.36 854.33 858.52
R101 (75) 566.21 794.35 966.37 808.44 1067.50 1077.27 997.67 1076.78 1077.49
C101 (75) 733.26 1058.98 1263.53 1040.80 1343.30 1357.73 1263.66 1360.02 1359.30

R101 (100) 773.23 1104.25 1329.93 1103.67 1443.20 1457.20 1348.84 1457.18 1457.34
C101 (100) 873.76 1306.69 1602.97 1275.28 1772.29 1808.49 1589.20 1809.13 1809.89

High Variability
R101 (25) 142.18 204.14 262.06 214.97 297.53 329.69 280.67 331.30 331.70
C101 (25) 197.57 281.16 310.74 294.00 401.96 454.70 368.89 453.32 459.39
R101 (50) 318.66 465.91 577.92 481.72 661.64 715.80 610.90 715.50 716.93
C101 (50) 314.21 480.98 567.51 497.66 714.06 824.24 636.36 837.93 854.92
R101 (75) 527.92 761.19 912.93 775.31 1042.71 1075.15 967.25 1075.28 1075.63
C101 (75) 698.64 1014.01 1194.19 1004.33 1324.46 1359.92 1219.75 1358.74 1360.58

R101 (100) 727.80 1043.31 1256.91 1053.96 1411.22 1452.23 1308.12 1452.36 1452.86
C101 (100) 824.09 1240.64 1519.84 1228.25 1690.97 1800.92 1539.82 1803.69 1806.45
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Table 22: Average CPU Seconds Per Instance
25 Customers 50 Customers 75 Customers 100 Customers

Method Avg. CPU Avg. CPU Avg. CPU Avg. CPU

No Decomposition
One-Step Rollout 42.70 – – –

Post-Decision Rollout 9.14 – – –
Pre-Decision Rollout 0.45 4.39 26.02 76.35

Static Decomposition
One-Step Rollout 0.85 5.29 18.42 30.82

Post-Decision Rollout 0.25 0.89 3.52 6.11
Pre-Decision Rollout 0.01 0.02 0.02 0.14

Dynamic Decomposition
One-Step Rollout 1.27 9.60 43.49 104.81

Post-Decision Rollout 0.53 5.29 29.70 81.75
Pre-Decision Rollout 0.41 4.94 27.94 80.53

Table 23: Average Demand Served by One-Step Rollout with Random Heuristic and High Quality

Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.15 221.93 278.66 236.94 325.38 332.02 309.90 332.02 332.02
C101 (25) 222.73 298.98 320.02 317.07 454.86 459.62 391.13 459.17 459.37

Moderate Variability
R101 (25) 147.80 216.29 273.14 223.96 312.88 331.02 290.00 331.42 331.56
C101 (25) 210.10 292.63 319.24 301.72 429.32 457.58 375.99 457.67 459.03

High Variability
R101 (25) 141.69 202.92 262.09 210.27 293.16 328.92 274.64 330.58 331.40
C101 (25) 185.77 273.41 309.12 283.66 399.24 452.93 360.26 450.94 459.37

Table 24: Average Demand Served by Post-Decision Rollout with Random Heuristic and High

Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.15 221.93 278.66 237.22 325.39 332.01 309.94 332.01 332.04
C101 (25) 222.44 299.07 320.02 317.10 454.86 459.64 391.11 459.20 459.64

Moderate Variability
R101 (25) 147.83 216.34 273.18 223.85 313.10 331.14 290.11 331.43 331.61
C101 (25) 211.77 292.83 319.23 302.32 431.09 457.73 376.07 457.78 459.21

High Variability
R101 (25) 141.38 202.91 262.10 210.45 293.35 329.05 274.80 330.48 331.72
C101 (25) 186.01 274.23 308.90 284.19 399.34 453.02 360.41 451.21 459.57
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Table 25: Average Demand Served by Pre-Decision Rollout with Random Heuristic and High

Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.15 221.93 278.66 236.91 325.40 332.01 310.46 332.00 332.04
C101 (25) 222.50 298.87 320.02 317.07 454.80 459.58 391.09 459.16 459.64
R101 (50) 355.49 501.20 632.47 520.38 716.59 721.04 662.16 720.93 721.15
C101 (50) 336.78 541.30 606.40 543.53 801.36 859.40 677.00 858.98 859.90
R101 (75) 593.76 831.77 1010.37 837.72 1077.56 1078.20 1034.31 1077.53 1078.27
C101 (75) 756.57 1097.16 1294.44 1067.95 1358.25 1359.85 1300.04 1359.80 1360.05

R101 (100) 804.14 1146.33 1376.46 1141.00 1456.94 1458.22 1383.87 1456.98 1458.53
C101 (100) 918.81 1349.53 1648.26 1304.86 1802.20 1810.47 1630.34 1809.80 1810.61

Moderate Variability
R101 (25) 147.75 216.06 273.03 223.32 312.92 330.94 288.49 331.43 331.61
C101 (25) 208.42 292.59 319.06 300.68 426.83 457.56 372.45 456.19 459.01
R101 (50) 329.98 486.24 610.11 494.38 690.87 719.51 620.26 719.44 720.33
C101 (50) 322.04 505.94 581.77 508.04 764.84 846.47 644.71 850.86 857.48
R101 (75) 558.12 791.91 962.35 793.13 1059.87 1076.42 975.88 1075.38 1077.00
C101 (75) 712.04 1046.65 1254.17 1015.28 1334.29 1357.07 1229.46 1358.65 1359.29

R101 (100) 755.12 1094.05 1326.28 1078.45 1435.32 1456.24 1314.21 1455.65 1456.35
C101 (100) 842.98 1293.06 1580.33 1229.09 1748.83 1806.67 1539.47 1805.71 1809.33

High Variability
R101 (25) 140.97 202.59 261.95 208.99 292.06 328.26 271.25 329.60 331.66
C101 (25) 184.85 272.76 306.81 280.73 396.49 449.63 348.90 447.74 458.80
R101 (50) 310.13 458.79 571.85 461.85 652.44 713.25 582.86 713.09 716.71
C101 (50) 303.07 474.69 559.07 470.09 694.69 818.60 603.12 821.78 854.49
R101 (75) 508.81 752.55 902.19 747.24 1024.29 1071.62 924.26 1072.75 1075.40
C101 (75) 656.74 979.14 1178.18 951.59 1291.56 1356.21 1145.70 1355.89 1360.20

R101 (100) 697.34 1020.06 1241.22 1007.47 1379.15 1449.76 1236.36 1449.04 1451.56
C101 (100) 778.99 1207.71 1481.94 1149.98 1635.31 1792.85 1440.16 1788.52 1804.77

Table 26: Average Demand Served by One-Step Rollout with Random Heuristic and Low Quality

Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 139.09 168.58 169.42 190.73 244.85 289.98 260.18 326.97 326.58
C101 (25) 189.90 247.86 262.84 276.43 373.01 417.69 354.41 456.08 459.62

Moderate Variability
R101 (25) 112.63 135.55 152.97 186.11 246.35 270.99 251.35 311.70 316.40
C101 (25) 154.81 243.66 276.90 266.50 379.16 431.17 340.90 445.31 458.88

High Variability
R101 (25) 100.95 170.81 179.24 188.72 245.36 257.88 241.03 287.83 323.12
C101 (25) 158.74 232.32 280.97 246.18 347.93 426.73 343.58 443.89 459.32
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Table 27: Average Demand Served by Post-Decision Rollout with Random Heuristic and Low

Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 126.12 137.59 193.97 188.98 253.47 278.00 255.24 295.16 318.62
C101 (25) 185.84 240.37 289.01 271.56 369.29 410.34 336.86 449.41 459.62

Moderate Variability
R101 (25) 91.18 127.39 148.32 192.46 245.93 246.68 259.27 310.94 323.72
C101 (25) 163.31 253.83 290.97 265.91 342.53 422.83 340.15 454.18 459.03

High Variability
R101 (25) 101.85 166.06 166.89 183.73 239.83 220.32 236.24 298.86 314.73
C101 (25) 159.38 236.36 263.47 249.39 356.71 417.08 340.84 444.31 457.93

Table 28: Average Demand Served by Pre-Decision Rollout with Random Heuristic and Low

Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 132.49 77.98 104.23 163.12 216.48 224.66 216.99 272.08 245.45
C101 (25) 137.04 218.49 199.25 231.91 286.66 324.77 326.13 394.40 443.70
R101 (50) 187.98 216.38 265.55 360.56 389.52 491.52 445.27 546.92 623.13
C101 (50) 212.07 181.01 284.95 375.63 467.39 467.38 495.42 691.06 603.31
R101 (75) 308.03 480.77 435.88 473.39 695.16 685.40 685.02 924.14 969.37
C101 (75) 435.31 549.71 624.06 747.64 946.05 1044.58 892.97 1117.04 1160.22

R101 (100) 337.06 471.57 586.29 752.75 882.84 999.21 954.10 1190.77 1166.73
C101 (100) 474.52 726.02 805.69 824.94 1032.82 1138.58 1204.42 1453.58 1504.07

Moderate Variability
R101 (25) 81.07 74.75 111.93 166.40 220.70 179.95 233.24 284.11 297.09
C101 (25) 135.26 201.33 220.90 212.64 333.83 354.06 286.33 415.91 451.18
R101 (50) 171.99 236.66 203.52 342.53 427.08 479.16 461.59 571.25 591.48
C101 (50) 219.97 249.54 293.23 298.28 417.91 470.09 478.70 643.59 678.04
R101 (75) 268.20 372.73 395.50 567.14 657.78 653.89 744.66 826.53 905.17
C101 (75) 437.69 511.63 595.78 710.68 854.67 1005.56 862.55 1120.36 1261.56

R101 (100) 394.49 525.11 510.02 713.52 828.37 914.20 999.79 1113.42 1217.49
C101 (100) 523.86 617.50 726.19 804.05 1016.49 1054.15 1119.80 1338.11 1542.41

High Variability
R101 (25) 79.08 129.83 139.10 167.03 197.55 182.61 214.58 207.26 293.00
C101 (25) 110.70 170.16 209.18 207.85 296.98 358.54 276.35 385.09 433.66
R101 (50) 202.57 184.22 280.36 275.26 373.05 396.64 437.18 538.64 584.31
C101 (50) 162.30 244.79 279.43 332.22 437.33 464.68 464.95 586.77 658.86
R101 (75) 299.76 397.22 376.09 478.67 663.89 707.77 706.95 843.65 926.92
C101 (75) 357.11 570.48 595.11 641.05 951.79 902.88 881.27 1069.45 1203.04

R101 (100) 382.19 491.48 525.51 634.02 870.38 919.92 829.12 1075.07 1222.25
C101 (100) 444.63 646.63 682.38 795.93 906.18 1117.25 1080.73 1351.25 1430.15
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Table 29: Average Demand Served by One-Step Rollout with Local Search Heuristic and Low

Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 143.27 196.03 223.80 234.87 308.25 330.77 300.39 331.97 332.01
C101 (25) 205.03 298.21 299.93 314.54 434.60 459.46 385.14 458.64 459.63

Moderate Variability
R101 (25) 118.54 182.24 204.84 222.41 303.68 325.51 292.93 330.84 331.53
C101 (25) 177.14 280.73 300.48 303.80 422.86 457.47 374.57 458.70 458.83

High Variability
R101 (25) 107.49 195.91 231.09 215.13 292.32 312.10 276.51 329.93 331.67
C101 (25) 175.81 268.90 312.72 281.40 403.86 451.71 371.73 452.08 459.98

Table 30: Average Demand Served by Post-Decision Rollout with Local Search Heuristic and Low

Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 142.79 194.18 229.62 236.85 310.32 331.39 304.89 331.79 331.99
C101 (25) 200.83 298.86 300.00 315.45 443.74 459.46 380.81 458.98 459.63

Moderate Variability
R101 (25) 119.71 183.46 209.10 225.48 303.95 324.44 292.20 331.11 331.45
C101 (25) 178.39 276.65 300.91 305.62 421.20 457.77 376.11 458.81 458.93

High Variability
R101 (25) 108.86 195.70 230.28 213.80 292.57 312.01 274.58 330.00 331.57
C101 (25) 175.06 266.28 311.26 281.27 402.46 451.32 370.07 452.58 459.97
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Table 31: Average Demand Served by Pre-Decision Rollout with Local Search Heuristic and Low

Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 139.12 196.21 209.85 216.80 284.09 316.94 295.26 331.98 332.01
C101 (25) 195.26 268.85 270.05 297.50 416.17 459.29 377.46 458.31 459.62
R101 (50) 293.22 408.92 542.69 495.48 681.97 694.70 623.17 720.31 720.87
C101 (50) 299.39 487.07 588.08 505.89 709.19 775.02 646.59 855.10 859.34
R101 (75) 521.87 728.68 864.26 777.35 1061.76 1059.13 964.02 1078.04 1074.09
C101 (75) 677.68 1011.09 1188.52 992.54 1343.31 1359.41 1252.69 1359.07 1360.05

R101 (100) 653.48 1005.22 1246.72 1049.08 1425.87 1456.45 1313.18 1458.41 1458.57
C101 (100) 754.43 1199.32 1452.48 1195.40 1691.50 1787.66 1537.69 1810.41 1810.77

Moderate Variability
R101 (25) 116.14 174.35 176.09 220.92 280.23 297.39 285.97 329.67 331.35
C101 (25) 172.50 279.19 297.26 298.10 414.40 455.48 368.39 455.81 458.81
R101 (50) 291.15 428.66 533.24 465.39 626.67 696.80 612.62 716.07 720.28
C101 (50) 309.06 443.90 537.97 482.63 698.81 789.58 638.66 844.36 858.20
R101 (75) 452.27 718.36 856.91 780.16 1033.13 1058.90 966.84 1076.18 1077.50
C101 (75) 660.71 967.78 1173.75 974.42 1316.61 1347.14 1225.73 1356.42 1360.04

R101 (100) 671.45 993.96 1246.24 1053.50 1376.74 1449.12 1301.85 1455.54 1457.21
C101 (100) 766.32 1217.22 1436.74 1215.59 1667.20 1800.42 1529.31 1803.82 1809.18

High Variability
R101 (25) 109.61 195.41 219.14 213.12 277.15 302.10 272.15 326.04 331.40
C101 (25) 169.01 264.90 300.51 276.92 397.80 447.47 366.01 450.30 459.99
R101 (50) 290.51 393.84 488.00 453.88 616.21 673.51 599.37 708.32 716.74
C101 (50) 247.51 444.18 529.85 486.26 673.23 780.83 623.86 829.67 851.62
R101 (75) 480.08 697.26 850.07 744.92 986.39 1065.57 944.51 1072.58 1075.62
C101 (75) 645.31 970.04 1141.26 965.10 1304.16 1356.17 1190.92 1356.27 1360.54

R101 (100) 628.55 959.50 1165.60 1015.45 1357.53 1437.42 1270.79 1445.89 1452.81
C101 (100) 775.46 1206.02 1400.92 1176.40 1628.64 1778.19 1495.75 1790.91 1804.53

Table 32: Average Demand Served by One-Step Rollout with Variable Neighborhood Search

Heuristic and High Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.27 221.97 278.66 238.15 324.66 331.99 312.70 331.97 331.99
C101 (25) 224.13 299.07 320.02 317.52 455.22 459.42 391.72 459.21 459.62

Moderate Variability
R101 (25) 149.92 217.48 273.20 228.68 315.03 331.34 297.57 331.32 331.53
C101 (25) 217.35 293.66 319.47 307.64 434.16 458.03 385.10 456.57 458.93

High Variability
R101 (25) 144.75 205.71 262.16 217.58 296.90 329.50 282.51 330.81 331.54
C101 (25) 203.84 280.57 312.41 299.76 409.96 454.26 373.35 453.30 459.36
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Table 33: Average Demand Served by Post-Decision Rollout with Variable Neighborhood Search

Heuristic and High Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.16 221.94 278.66 237.84 325.73 332.02 311.79 331.87 331.97
C101 (25) 224.04 299.14 320.04 317.30 454.94 458.84 391.78 459.29 459.51

Moderate Variability
R101 (25) 149.73 216.76 273.18 228.16 314.45 331.34 295.96 330.90 331.44
C101 (25) 216.74 293.29 319.38 306.73 434.42 457.48 381.97 456.44 459.00

High Variability
R101 (25) 144.33 203.65 261.99 214.80 297.19 329.34 281.04 330.78 331.64
C101 (25) 203.67 280.13 311.35 297.58 406.11 453.88 369.91 453.12 459.35

Table 34: Average Demand Served by Pre-Decision Rollout with Variable Neighborhood Search

Heuristic and High Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 156.27 221.93 278.66 237.32 325.40 332.01 310.68 332.02 332.04
C101 (25) 223.59 298.97 320.02 317.08 454.80 458.89 391.21 459.24 459.64
R101 (50) 359.04 501.21 632.52 523.75 716.77 721.05 663.49 721.06 721.15
C101 (50) 339.34 541.36 606.52 543.89 801.46 859.47 677.41 859.17 859.91
R101 (75) 595.01 832.99 1010.60 839.79 1077.66 1078.26 1035.17 1077.90 1078.40
C101 (75) 759.68 1098.42 1294.70 1070.33 1359.14 1359.92 1301.52 1360.03 1360.05

R101 (100) 808.28 1146.63 1376.81 1144.74 1457.27 1458.44 1387.27 1458.15 1458.60
C101 (100) 923.01 1351.92 1649.03 1306.63 1804.02 1810.66 1633.45 1809.98 1810.83

Moderate Variability
R101 (25) 149.45 216.95 273.20 225.92 313.48 331.28 294.11 331.34 331.61
C101 (25) 215.77 293.30 319.31 304.22 431.24 457.79 378.42 457.23 459.23
R101 (50) 332.39 487.05 610.56 499.88 694.03 720.07 628.84 720.11 720.47
C101 (50) 328.08 509.00 582.59 518.13 765.66 847.90 653.64 853.89 858.35
R101 (75) 565.08 792.75 963.92 803.36 1063.61 1076.80 989.36 1076.44 1077.49
C101 (75) 728.57 1050.84 1257.77 1027.16 1341.25 1357.94 1252.72 1359.93 1359.45

R101 (100) 770.09 1099.90 1327.86 1092.41 1439.93 1456.69 1331.08 1456.28 1457.17
C101 (100) 868.88 1301.46 1589.85 1255.32 1763.09 1807.79 1570.31 1808.32 1809.78

High Variability
R101 (25) 142.13 203.68 262.10 215.29 294.02 329.18 278.94 330.55 331.70
C101 (25) 198.77 278.74 310.25 291.58 402.61 454.84 368.12 452.82 459.34
R101 (50) 317.86 463.98 575.06 479.49 660.32 714.76 607.18 715.22 716.88
C101 (50) 314.59 477.66 565.33 493.29 706.10 821.04 633.11 835.45 854.82
R101 (75) 522.63 756.31 907.13 772.34 1033.27 1074.47 957.86 1074.78 1075.57
C101 (75) 691.07 1002.23 1183.76 985.39 1316.55 1358.98 1202.00 1357.80 1360.54

R101 (100) 721.00 1034.13 1249.64 1048.12 1393.00 1451.35 1289.19 1451.09 1452.82
C101 (100) 814.20 1230.49 1501.26 1205.63 1669.21 1798.50 1508.56 1802.21 1805.79
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Table 35: Average Demand Served by One-Step Rollout with Variable Neighborhood Search

Heuristic and Low Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 143.29 193.08 232.77 229.56 298.50 327.35 297.95 332.03 331.99
C101 (25) 204.85 297.77 299.86 313.20 448.34 459.52 385.85 459.37 459.64

Moderate Variability
R101 (25) 116.84 179.62 204.13 224.10 299.32 316.42 292.81 331.01 331.49
C101 (25) 179.26 281.77 300.53 304.64 422.95 457.72 378.73 458.78 458.91

High Variability
R101 (25) 109.95 197.03 228.82 215.95 291.68 307.10 276.78 329.04 331.65
C101 (25) 176.03 269.49 311.49 281.23 402.27 451.04 371.09 452.06 459.96

Table 36: Average Demand Served by Post-Decision Rollout with Variable Neighborhood Search

Heuristic and Low Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 143.23 195.11 227.24 229.61 303.88 327.57 301.56 331.95 331.98
C101 (25) 204.76 297.88 300.00 314.96 437.72 459.49 384.91 459.17 459.62

Moderate Variability
R101 (25) 116.69 183.42 208.66 222.20 297.30 319.49 290.64 330.95 331.49
C101 (25) 177.47 284.84 300.50 303.20 420.61 457.71 376.72 458.76 458.84

High Variability
R101 (25) 106.23 195.12 226.53 212.95 288.94 307.56 275.31 329.37 331.60
C101 (25) 173.69 264.42 310.38 280.22 399.08 451.10 368.36 451.67 459.99
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Table 37: Average Demand Served by Pre-Decision Rollout with Variable Neighborhood Search

Heuristic and Low Quality Initial Policy
Duration short medium long
Capacity small medium large small medium large small medium large

Low Variability
R101 (25) 142.89 192.54 218.29 216.35 296.29 316.42 297.35 331.69 332.01
C101 (25) 196.26 289.26 296.97 297.62 423.40 459.05 379.07 459.22 459.64
R101 (50) 305.27 423.39 557.71 482.94 654.65 686.62 620.51 720.64 720.93
C101 (50) 306.17 475.15 571.89 499.10 712.85 826.03 643.64 851.81 859.21
R101 (75) 534.63 738.25 848.68 785.62 1019.21 1058.30 974.35 1078.32 1078.38
C101 (75) 676.88 996.71 1192.65 990.96 1332.91 1354.16 1240.57 1359.44 1360.03

R101 (100) 652.06 1012.47 1182.86 1052.57 1381.58 1441.39 1321.52 1458.15 1458.48
C101 (100) 771.81 1226.84 1487.96 1207.08 1689.89 1765.98 1534.50 1809.44 1810.59

Moderate Variability
R101 (25) 117.30 178.21 199.66 219.08 290.72 310.20 287.67 330.22 331.55
C101 (25) 177.25 279.28 300.05 299.20 415.32 456.49 368.74 457.98 459.13
R101 (50) 295.56 443.09 528.59 471.11 636.67 687.83 614.07 715.75 720.40
C101 (50) 309.86 424.41 529.42 481.60 690.08 803.73 640.12 839.44 858.06
R101 (75) 475.10 718.45 845.18 778.16 1002.80 1052.10 959.90 1076.31 1077.42
C101 (75) 664.95 973.10 1179.69 974.43 1293.24 1352.53 1221.42 1358.75 1360.49

R101 (100) 666.45 985.50 1178.08 1044.39 1354.82 1424.41 1296.30 1455.31 1457.20
C101 (100) 780.64 1211.78 1459.91 1206.70 1655.12 1777.29 1514.45 1803.17 1809.24

High Variability
R101 (25) 104.65 189.90 224.80 211.34 284.40 300.64 273.16 327.25 331.63
C101 (25) 170.31 258.22 305.61 278.91 397.33 446.45 366.93 451.27 459.98
R101 (50) 292.25 412.37 508.01 452.08 619.24 670.41 595.57 706.27 716.63
C101 (50) 253.47 438.07 528.14 484.76 665.17 789.82 621.36 818.19 853.23
R101 (75) 479.76 704.93 839.25 747.32 977.11 1044.40 940.28 1072.28 1075.53
C101 (75) 648.97 958.43 1135.94 956.01 1283.97 1348.34 1189.68 1356.51 1360.52

R101 (100) 628.13 960.97 1143.07 1015.23 1325.16 1411.81 1258.76 1447.51 1452.73
C101 (100) 775.62 1186.93 1394.33 1166.70 1604.52 1746.24 1482.95 1787.76 1805.74
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