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Abstract

We develop methods to estimate and exactly calculate the expected cost of a priori policies for
the multi-compartment vehicle routing problem with stochastic demands, an extension of the
classical vehicle routing problem where customer demands are uncertain and products must be
transported in separate partitions. We incorporate our estimation procedure into a cyclic-order-
based simulated annealing algorithm, significantly improving the best-known solution values
for a set of benchmark problems. We also extend the updating procedure for a cyclic order’s

candidate route set to duration-constrained a priori policies.

Keywords: logistics, stochastic multi-compartment vehicle routing, cyclic-order search, simulated

annealing

1 Introduction

Vehicle routing problems with stochastic demands (VRPSDs) underlie operational problems in

logistics where routes must be planned without full knowledge of customer demand levels. In
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such cases, actual demands are first observed upon arrival to customer locations. In some situa-
tions, products must be transported in independent vehicle compartments, giving rise to the multi-
compartment vehicle routing problem with stochastic demands (MCVRPSD), a generalization of
the single-compartment case (see the review of Gendreau et al. (1996) or the work of Laporte et al.
(2002) for examples). Applications of the MCVRPSD include the collection and delivery of dif-
ferent types and qualities of milk (Caramia and Guerriero, 2010), distribution of various grades of
fuel (Brown et al., 1987), transport of animal food (El Fallahi et al., 2008), pickup and delivery
of livestock (Oppen and Lgkketangen, 2008), selective waste collection, and transport of groceries
requiring different levels of refrigeration.

A common approach to handle uncertainty in customer demands is to restrict attention to a
priori policies (see Campbell and Thomas (2008) for a review). An a priori policy requires vehicles
to visit customers in the order specified by a set of pre-defined routes, returning to the depot to
replenish in the event vehicle capacity is inadequate to fully serve demand, i.e., a route failure. A
priori routes are routinely used in industry (Erera et al., 2010) and create a regularity of service
that can be beneficial for both the customers and the drivers — customers may be served at roughly
the same time each day they require service and the drivers become familiar with their routes.

We make two main contributions. First, we develop methods to estimate and exactly calculate
the expected cost of an a priori MCVRPSD policy. Straightforward procedures exist to calculate
the expected cost of an a priori policy when all products are transported in a single compart-
ment (Teodorovi¢ and Pavkovi¢, 1992). However, in the multi-compartment case, a priori policy
evaluation is more difficult. Mendoza et al. (2008, 2010, 2011) derive an expression to calculate
the expected cost of an a priori policy, but the expression requires probability calculations to be
made over random variables representing partially unserved customer demands. The distributions
of these random variables are unknown, thereby making it difficult to implement the expression.
Recognizing this challenge, Mendoza et al. (2008) explore methods to approximate the expected
cost of an a priori policy for the MCVRPSD. When the ratio of compartment capacities to customer
demands is high, Mendoza et al. (2008) find a fake-all approximation yields good estimates of the

expected cost. However, the bias of the estimate increases as the ratio of compartment capacities



to customer demands decreases.

The method we propose to calculate the exact expected cost of an a priori MCVRPSD policy
builds on Goodson et al. (2013) and applies to problem instances where customer demands follow
discrete probability distributions with finite support. The method requires exponential time to
execute and is not practical for use in optimization procedures. However, the exact method leads
to a simulation scheme that provides unbiased and consistent estimates of a policy’s expected cost
for both discrete and continuous customer demand distributions. Because the simulation scheme
can be efficiently incorporated into local search procedures, it provides an attractive alternative
when the bias of the take-all approximation is unacceptable.

Our second contribution is the development of a cyclic-order-based simulated annealing proce-
dure for the MCVRPSD. Goodson et al. (2012) propose cyclic-order neighborhoods as the basis of
local search methods for a broad class of routing problems, of which the MCVRPSD is a member.
We utilize our simulation scheme for a priori MCVRPSD policies to accelerate the initial itera-
tions of the simulated annealing procedure. We also extend the cyclic-order updating procedure
of Goodson et al. (2012) for the candidate route set to the duration-constrained a priori policies
considered in this paper.

As of this writing, our method appears to be the most effective heuristic for the MCVRPSD.
Without tailoring the cyclic-order search procedure to the MCVRPSD, we improve the best-known
solution values for 159 of 180 benchmark problem instances and match the best-known solution
values for the remaining 21 instances. These results, in conjunction with the results of Goodson
et al. (2012), support cyclic-order-based local search as an effective solution procedure for a variety
of routing problems.

The remainder of the paper is organized as follows. In §2, we formally state the MCVRPSD.
In §3, we review related literature. In §4, we discuss methods to exactly calculate and estimate
the expected cost of an a priori MCVRPSD policy. In §5, we present our cyclic-order-based simu-
lated annealing procedure. In §6, we discuss the results of computational experiments. We make
concluding remarks and suggestions for future research in §7. Appendix A provides a guide to the

primary notation used in the paper.



2 Problem Statement

The MCVRPSD generalizes the classical vehicle routing problem, a NP-hard optimization problem
(Toth and Vigo, 2001). The MCVRPSD is characterized by a complete graph G = (N, £), where
N ={0,1,...,N}isasetof N + 1 nodes and & = {(n,n’) : n,n’ € N} is the set of edges
connecting the nodes. Nodes 1, ..., N represent customer locations and node 0 represents a depot
from which a set M = {1,2,..., M} of identical vehicles operates. Each vehicle contains a
separate compartment for each product in the product set P = {1,2,..., P}. The capacity of the
compartment assigned to product p in P is (),. Customer demands for products are assumed to
be independent random variables. The random demand for product p in P at customer n in N is
denoted D,,,. We denote the distribution function by Fp, (-) with support S(D,,,,), which we
require to be a subset of the range [0, D], where D is a finite number. Prior to arrival at customer
locations, customer demands are known only in distribution. Upon arrival, customer demands for
each product are observed and served to the maximum extent possible, subject to available vehicle
capacity for each product. When capacity in one or more compartments is exhausted (i.e., a route
failure occurs), a vehicle returns to the depot and replenishes the capacity of all compartments.
Vehicle routes begin and end at the depot and travel times among customers are known. The time
to travel from location n to location n’ is denoted t(n,n’). The objective of the MCVRPSD is to
obtain a policy that serves customer demand with minimal expected travel time subject to a route
duration limit L (e.g., end of a working day), by which time all vehicles must return to the depot.
To be consistent with the literature, we use travel time to represent cost, noting that (-, -) may be
replaced with a general cost function.

We focus on a priori routing policies for the MCVRPSD. A priori policies are characterized by
a priori routes, or predetermined sequences of customers. We denote an a priori route for vehicle
m in vehicle set M by the sequence of customers v = (vg* = 0,v{", ..., v}, V7, = 0). We
denote by (v™),,eMm @ set containing an a priori route for each vehicle m in M. In a set of a priori
routes, each customer appears exactly once on exactly one route. We adopt the classical detour-

to-depot policy, the same policy employed by Mendoza et al. (2010, 2011). The policy requires



vehicles to serve customers in the order they appear in a set of a priori routes. Vehicles must travel
directly to the next customer on the route, i.e., preemptive capacity replenishment is not allowed.
In the event of a route failure, vehicles must make return trips to the depot until customer demands
are fully served. An a priori route is feasible if its expected travel time is less than or equal to the
route duration limit L. If we denote by V the set of all a priori route sets, by A,m ., the random
arrival time of vehicle m to final destination v}%, ,;, and by E[A,= | the expected arrival time of

Urmgq

vehicle m to vy, ;, then the problem we seek to solve is

min{ Y E [AU%H] : (1)

meM
E [AU%H} <LmeM, )
(W™, EVY. 3)

Throughout the remainder of the paper, because we refer primarily to a single a priori route, to
ease the notation we drop the superscript m and refer to a route simply by v and to the i customer

on a route by v;.

3 Related Literature

Research related to multi-compartment vehicle routing appears to begin with van der Bruggen
et al. (1995), who consider the task of designing delivery routes for gasoline distribution. van der
Bruggen et al. (1995) and others model customer demands as deterministic. In this section, we
focus on literature treating customer demands as stochastic.

Mendoza et al. (2008) study take-none and take-all approximations of the recourse cost com-
ponent of a priori policies. The take-all approximation assumes that when a route failure occurs
at a particular customer, all demands for all products at that customer are served in full before
replenishing capacity at the depot; the take-none approximation assumes none of the demands are
served. Both approximations circumvent the issue of making probability calculations over random

variables with unknown distributions. Computational experiments conclude the take-all scheme is
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superior, but that the quality of both approximations degrades as the ratio of compartment capaci-
ties to customer demands decreases.

The methods we propose to estimate and exactly calculate the expected cost of a priori policies
serve as alternatives to the take-none and take-all approximations. Our methods differ in three
ways. First, the take-none and take-all approximations can be used when demands follow discrete
or continuous probability distributions, provided the convolution of random demands can be read-
ily calculated (e.g., Poisson- or normally-distributed demands). In contrast, our exact evaluation
procedure can only be used when customer demands follow discrete distributions, but there is no
limit imposed by the need to calculate convolutions of random variables. The estimation procedure
may be applied regardless of the nature of customer demand distributions. Second, our procedures
do not depend on the assumption that demand realizations are less than or equal to compartment
capacities, thereby accounting for the possibility of multiple route failures at one customer. Third,
when fully serving a customer’s demands exhausts vehicle capacity, rather than require the vehicle
to return to the current customer after replenishing capacities at the depot, our methods route the
vehicle directly to the next customer on the a priori route.

Using the take-all scheme to approximate expected route costs, Mendoza et al. (2010) build
on the memetic algorithm of El Fallahi et al. (2008), improving solution values obtained by a con-
structive heuristic and by an alternative memetic procedure. Also using the take-all approximation,
Mendoza et al. (2011) propose construction heuristics that yield good solutions with short com-
puting times. Adapting our cyclic-order procedure to the take-all scheme, we improve many of the
solution values obtained by Mendoza et al. (2010, 2011).

Seeking to balance the trade-off between expected routing costs and variability, Mendoza et al.
(2009) place a constraint on the probability that route cost exceeds a given threshold. Within a
memetic algorithm, the expected route cost and the variance of the route cost are estimated via
simulation. We also employ simulation to estimate expected route costs, explicitly showing how
the simulation can be incorporated into local search procedures.

For a given sequence of customers, Pandelis et al. (2012) develop a dynamic programming

algorithm to determine an optimal restocking policy. Demonstrating a threshold-type structure



on the optimal policy for any integer number of vehicle compartments, Pandelis et al. (2012)
generalize the work of Tatarakis and Minis (2009), which applies to only two compartments. The
restocking policies of Pandelis et al. (2012) and Tatarakis and Minis (2009) are a relaxation of the
a priori policies we consider, which do not permit preemptive capacity replenishment prior to route
failures. In contrast to the work of Pandelis et al. (2012) and Tatarakis and Minis (2009), which
assumes a fixed delivery sequence, we search the space of a priori delivery sequences seeking
lower-cost a priori policies.

The procedures of §4 build on Appendix A of Goodson et al. (2013), which develops a priori
policy evaluation methods for a single-compartment VRPSD with route duration constraints where
the objective is to maximize expected demand served. We extend the methods of Goodson et al.
(2013) to the multi-compartment case and to the objective of minimizing expected route costs.
These extensions increase the computational complexity of a priori policy evaluation from pseudo-
polynomial to exponential in the number of vehicle compartments.

The heuristic developed in §5 builds on Goodson et al. (2012), which develops cyclic-order-
based local search methods for a broad class of routing problems. Based on the concept of optimal
partitioning (Beasley, 1983), a cyclic order maps a permutation of the customer set to a collection
of many possible routing solutions, the best of which can be identified via the polynomial-time
procedure of Ryan et al. (1993) and Boctor and Renaud (2000). Our heuristic uses the neighbor-
hood structures proposed by Goodson et al. (2012), but extends the solution updating procedure to

accommodate duration-constrained routes.

4 Evaluation of A Priori Policies

In §4.1, we develop a procedure to calculate the expected travel time incurred by an a priori route.
When customer demands follow discrete probability distributions, the procedure in §4.1 yields
an exact calculation of the expected travel time. In §4.2, we discuss how to use simulation to
estimate the expected travel time of an a priori route. The simulation scheme yields unbiased and

consistent estimates of the expected travel time for both continuous and discrete customer demand



distributions. Applying the methods of §4.1 or §4.2 to each a priori route in a set of routes allows

for the calculation or estimation of the objective function (1) and the constraints (2).

4.1 Exact Evaluation

Below, we develop a method to calculate the expected time of initial arrival to a particular customer
on an a priori route. Given a set of a priori routes v, the associated policy can be evaluated by
applying the method to the last customer on each route, v;,1, and summing the results.

The initial arrival time at a customer on an a priori route is a function of the initial arrival time
at the previous customer, the demands at the previous customer, and available vehicle capacities
upon initial arrival to the previous customer. We denote by A,, the random time of the initial
arrival of the vehicle to customer v; on a priori route v. We denote by C,, ,, the random capacity of
compartment p of the vehicle upon the initial arrival to customer v; on a priori route v. We denote
by a,, and c¢,, realizations of A,, and C,,, respectively. If demand for a product is greater than or
equal to the available capacity for that product, then return trips to the depot are required to fully

serve demand at that customer. In such cases, if we define

¥ (v;) = max {M} , “)

peP Qp

where |[-] is the ceiling function and d,, , is a realization of D,, ,, then [¢)(v;)] is the number of
return trips to the depot required to fully serve demand for all products at customer v;.

We separate the calculation of ¢,, , and a,, into three cases:

i— _ _ _ v p € ;
C'U' 1,P Vi—1,pP? Vi—1,P Vi—1,P )

Coip =\ @y, Y(vie1) = [P(vie1)], )
\min { ﬁ/}(vi—l)]QP - dvifhp + Co;_1,p Qp} ) ¢(Uz'—1) < W(UH)L

and



p
Ay 4 + t(vi—lvvi)’ dvi—lvp < Cvi_1,p Vp € P?

y;_y + (V(vim1) + 1) - t(vi1,0)
Oy, = +1(vi—1) - t(0,v;1) + (0, v;), Y(vie1) = [P(vi1)], ©)

Ay, +t(vim1, v;)

+[(viea) ]+ (#(viz1,0) +1(0,v;21)),  D(vim1) < [P(vim1)].

The boundary conditions in equations (5) and (6) are c,,, = (), for all products p in P and for

\

all vehicles and a,, = 0 for all vehicles. In the first case, demand for each product at customer
v;—1 1s less than the available capacity for that product, thus vehicle capacity for each product
is simply decremented by the amount of demand for that product and the vehicle travels directly
from v;_1 to v;. The second and third cases account for situations where the demand for at least one
product at customer v;_; is greater than or equal to vehicle capacity for that product upon arrival
to v;_1, thereby requiring [¢(v;_1)]| return trips to the depot to replenish capacity. In the second
case, satisfying demand for all products at v;_; exactly depletes vehicle capacity for at least one
product, thereby requiring the vehicle to replenish at the depot one additional time and then travel
directly to customer v; with full capacity in each compartment. In the third case, some capacity
remains in all vehicle compartments after serving demands for all products at v;_;. After making
the necessary return trips to the depot, the vehicle travels directly from v;_; to v;.

We denote by C,,, = (C,, ,)pep the vector of remaining capacities for the vehicle upon initial
arrival to customer v; and by D,, = (D,, ,),ep the vector of random demands at customer v;. We
denote by c,, and d,, realizations of C), and D,,, respectively. For clarity, we sometimes write
¢y, p and a,, as functions of the terms they depend on. Specifically, we denote by c,,(d,c) =
(€v;.p(d, €))pep the capacities upon initial arrival to customer v; when d,, , = d and ¢,, , = c.
Similarly, we denote by a,,(d,c,a) the time of initial arrival to customer v; when d,, , = d,

Cv;_, = C, and a,,_, = a. Further, we denote the p element of a demand vector d and capacity

—1 1
vector ¢ by d,, and ¢, respectively.
Proposition 1 establishes a recursion to calculate the joint probability of initial arrival time at

customer v; and capacities upon initial arrival to customer v;. Proposition 1 also provides an ex-



pression to calculate the expected initial arrival time at customer v;. We assume customer demands
follow a discrete probability distribution and we denote the probability mass function for demand

at customer n for product p by fp, (). A proof of Proposition 1 is provided in Appendix B.

Proposition 1 (Properties of A Priori MCVRPSD Policies). The joint probability of arriving to

customer v; with available capacities c and at time a is

P{C,, =c A, =a} = Z Z Z 1{c=cy,(d,d),a=a,(d, dad)}
d o

P
P{Cy, = A =} -] fou,,(d), D
p=1

where 1{-} is an indicator function that returns 1 if the statement {-} is true and 0 otherwise. The

expected time of initial arrival at customer v; is

P
E[A,]=> 3 Y a(dca) P{C,_, =c Ay, =a}-[] fo._,,(d) (8)
d c a p=1

where P{C,, , = ¢, A,,_, = a} is calculated via equation (7).

Algorithm 1 employs Proposition 1 to calculate the expected time at which the vehicle first
arrives to customer v;. Applying Algorithm 1 when index ¢ = [ + 1, the index of the last location
on route v, results in the expected time required to serve all customer demands on a priori route
v. To ease the notation, we define g(vj,c,a) = P{C,, = ¢, A,;, = a}. We denote by S(D,,) =
Xpep S(Dn,) the joint support of demands at customer n for the product set P, where x is the
Cartesian product.

Lines 1-4 of Algorithm 1 initialize the procedure. Line 1 assigns a probability of one to the
initial state of the vehicle — the vehicle is initially located at the depot, with full capacity, and at
time zero. Line 2 assigns a probability of zero to all other possible initial states. Line 3 initializes
joint capacity and arrival probabilities for all other customers to zero and line 4 initializes to zero
the expected time of initial arrival to customer v;; these quantities are updated as Algorithm 1 is

executed. Lines 5-8 utilize equation (7) to build the joint probabilities of capacities and arrival
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times at customers vy, vs, . . ., v;—1 . Finally, lines 9-11 apply equation (8) to calculate the expected

time of initial arrival to customer v;.

Algorithm 1 Calculation of Expected Time of Initial Arrival to Customer v;
: g(?)o, (Qp)pGPv 0) 1

—_—

2: g(U07 ) CL) < 0 for all (Cu a) 7£ ((QP)PGP: 0)
3: g(vj,c,a) <~ 0forj=1,2,...,i— 1andforall (c,a)
4: E[A,,] <0

5: forj=1,2,...,i—1do
6: for g(v;_1,c,a) # 0 do
7: ford € S(D,,_,) do
8: 9(vj, ¢, (d, €), ay,(d, ¢, a)) <
90y, c0y(d, ), a,(d, ¢, @) + g(vyr,e,a) - TI2, fo, ,,(dy)
9: for g(vi_1,c,a) #0do
10: ford € S(D,,_ ,) do
1: E[A,] « E[A,] + ay,(d, c,a) - g(vii, c,a) - TI, fo,,_,,(dy)

Under the assumption that customer demands, vehicle capacities, and travel times are all
integer-valued, Proposition 2 establishes the worst-case complexity of Algorithm 1 is exponen-
tial in the number of products. A proof of Proposition 2 is provided in Appendix B. The driver of
the exponential complexity is the size of the supports for demands at each customer. Even when
other parameters take on small values, Algorithm 1 iterates over the supports, leading to a best-case

complexity that is also exponential in the number of products.

Proposition 2 (Worst-Case Complexity). Ler Q = max,ep{Q,}, let @ = min,ep{Q,}, let L =
max;—1, ;—1{t(v;,0) + t(0,v;)}, and let S = max{|S(D,,,)| : j =1,...,iandp = 1,..., P}.

Assume customer demands, vehicle capacities, and travel times are all integer-valued. Then, the

worst-case computational complexity of Algorithm 1is O(i-L-Q - P - [D/ Ql- EP).

Although Algorithm 1 can in principle be used to evaluate a priori MCVRPSD policies, the

practical use of Algorithm 1 is limited. When route size, number of products, and support sizes
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exceed modest values, execution time and demands on computer memory become excessive. We
explore the behavior of Algorithm 1 in §6.2. The computational limitations of Algorithm 1 moti-

vate the simulation-evaluation method of §4.2.

4.2 Evaluation via Simulation

Because Algorithm 1 requires exponential time to execute, statistical estimation of the value of an
a priori MCVRPSD policy may be an attractive alternative to exact evaluation. Below, we show
how to estimate the expected time of initial arrival to a particular customer. We also discuss how
the estimation procedure can be implemented within local search schemes.

Let CZM, be a randomly generated demand from distribution function F'(-)p, , for product p at
customer . Denote by d,, = (d\nm)pep a vector of randomly generated demands at customer n and
by d= (cin)ne A\{o} @ vector of randomly generated demands at all customers and for all products.
Let dl, 622, ..,d%be H randomly generated demand vectors. Then, the expected arrival time at
customer v; can be estimated by

Bla) == o ©)

H Vi
h=1

Jh

where ag. is the time of the vehicle’s initial arrival to customer v; when customer demands are d".

ff: can be calculated recursively using equations (5) and (6). This is accomplished by

The quantity a
initializing a,, to 0 and c,, to (Q,)pep. Then, for j = 1,2,...,4, calculate c,; = c,, (aAlfjjil, Co;_y)
and a,;, = a,, (cZZj_l, Co;_y1» Qu;_, ), yielding afj equal to a,,. Because E[A,,] is the sample mean
of the arrival times across all /I demand samples, it is an unbiased and consistent estimator of
E[A,,]. Calculating ]E[Avi] when index i = I + 1, the index of the last location on route v, results
in an unbiased and consistent estimate of [E[A,,], the expected time required to serve all customer

demands on a priori route v.

Within a local search scheme, when calculating IE[A , it may not be necessary to estimate

UI+1]
the time of initial arrival to each customer in a priori route v. Because the time of initial arrival at a

customer depends only on the preceding sequence of customers’ demands, capacities, and arrival
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times, it is only necessary to estimate the expected time of initial arrival where the preceding
sequence of customers has changed; initial arrival times at other customers remain the same.
More generally, suppose the current solution in a local search procedure contains a priori route

v, that IE[A has been calculated, and that for each demand sample d, ¢y, and a,, have been

UI+1]
stored for ¢ = 0,1, ..., I + 1. Further, suppose a neighbor solution ¥ is generated by changing the

customer sequence of v beginning at customer vj. For demand sample h, because c;,_, and ag, _,

are known from the current solution, agll can be obtained by calculating ¢;; = ¢, (cfgj_l, Co;_1)
and a,; = a@j(dgjfl, Co;_1, ;) for j =k, k+1,...,|v] — 1. Repeating this procedure for each

demand sample and averaging the results yields IAET[A We employ this updating procedure

vl
when estimating the cost of a priori routes in the cyclic-order-based local search we describe in §5.

Because the computation required to calculate ]/E\I,[Avi] grows linearly with the sample size H,
equation (9) may be an attractive alternative to Algorithm 1. In accordance with Proposition 2,
the computational experiments we present in §6.2 suggest the difference in computation time be-
tween estimation and exact evaluation grows exponentially with route size, number of products,

and support sizes. Thus, for many problem instances, estimation-based local search for a priori

MCVRPSD policies may be the only computationally tractable alternative.

5 Cyclic-Order Simulated Annealing Procedure

In §5.1, we describe a cyclic-order simulated annealing procedure for a priori MCVRPSD policies.
Our procedure utilizes a cyclic-order solution encoding (based on Ryan et al. (1993)), which maps
a permutation of the customer set to a collection of many possible MCVRPSD solutions, the best
of which is identified via a polynomial-time algorithm. We employ the neighborhood structures
of Goodson et al. (2012), which operate directly on cyclic orders. In §5.2, we extend to duration-
constrained a priori policies the updating procedure of Goodson et al. (2012) for a cyclic order’s
candidate route set. Although we summarize the cyclic-order approach and our modifications in
this section, the reader is referred to Goodson et al. (2012) for more details.

To compare the output of our simulated annealing procedure with solution values reported

13



in the literature, we evaluate a priori policies using the take-all scheme of Mendoza et al. (2008,
2010, 2011). We do this because the literature does not report exact solution values for MCVRPSD
problem instances, thus a comparison with such a benchmark is not possible.

The take-all approximation assumes that when a route failure occurs at a particular customer,
all demands for all products at that customer are served in full before replenishing capacity at the
depot. The take-all approximation is achieved via a small modification to equation (5): in the
third case, set the compartment capacity equal to (). Thus, the procedures outlined in §4 can be
used to estimate and exactly calculate the take-all cost of an a priori MCVRPSD policy. Because
exact evaluation via our procedures is limited to discrete customer demand distributions, we use
the procedure of Mendoza et al. (2008, 2010, 2011) to evaluate the take-all cost when customer

demands follow continuous distributions.

5.1 Two-Stage Simulated Annealing Algorithm

Simulated annealing (Kirkpatrick et al., 1983; Johnson et al., 1989, 1991) is a local search al-
gorithm in which non-improving moves are probabilistically accepted in an attempt to avoid be-
coming trapped in a low-quality, locally-optimal solution. Our simulated annealing procedure is
executed in two phases. In the first phase, we estimate the take-all value of a priori MCVRPSD
policies using the method outlined in §4.2, modified to accommodate the take-all scheme, as de-
scribed above. The second phase seeks to improve the solution by exactly calculating the take-all
value of a priori MCVRPSD policies. Because customer demands follow continuous distributions
in the benchmark problem instances of §6.1, we employ the procedure of Mendoza et al. (2008,
2010, 2011) to calculate the take-all cost.

The primary benefit of the two-phase procedure is reduction in computation time. Although the
second phase can serve as a stand-alone solution procedure (and this yields good MCVRPSD so-
lutions), initializing the second phase with the first-phase solution can accelerate discovery of high
quality MCVRPSD solutions. Our experience suggests setting the number of randomly generated
demand vectors to H = 3 in phase one is sufficient to identify quality initial solutions for phase

two. For the problem instances we consider, setting /' larger than 10 tends to negate the compu-
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tational benefit of the first phase, i.e., the exact take-all calculation of Mendoza et al. (2008, 2010,
2011) is faster than estimating the take-all value via simulation. In §6.2, we present additional

discussion on the effect of parameter H.

Algorithm 2 Simulated Annealing

1: repeat

2: repeat

3: Randomly select neighborhood U (-) € {1-shift, 2-shift, 3-shift, reverse, exchange}
4: Randomly select myeigh € U (Tourr)

5: Teurr $— Tneigh With probability exp{—((u(Tneign) — U(Teurr))) " /7}

6: if u(Teurr) < U(Tpese) then

7: Thest €~ Teurr

8: until j iterations

9: T4+ 17x0.99

10: until At least y iterations and not update 7,y for A successive iterations

Algorithm 2 outlines the steps required to execute a single phase of our simulated annealing
procedure. Three cyclic orders are maintained — Tyes, Teurr, and Tpejgn — corresponding to the
best-found, the current, and a neighbor cyclic order, respectively. An iteration of the inner loop
begins on line 3 by randomly selecting one of five neighborhood structures proposed by Goodson
et al. (2012): 1-shift, 2-shift, 3-shift, reverse, or exchange. Denoting the resulting neighborhood
structure by U(+), line 4 randomly selects a cyclic order Theigh 1IN U (Teurr)> the neighborhood of the
current cyclic order. Line 5 probabilistically updates 7y, With e, where (y)" =yify > 0and
0 otherwise, 7 is the current temperature, and u(-) is a function representing the evaluation of a
cyclic order (see Goodson et al. (2012) for details) and returns the take-all value of the associated
route set. Lines 6 and 7 update the best-found cyclic order. The inner loop terminates after
iterations. The outer loop implements a geometric cooling schedule and terminates after at least «y
iterations and without having updated the best-found cyclic order for A successive iterations.

The first phase initializes e and 7., With a radial ordering of customers about the depot (i.e.,

customers are ordered by their polar angle with respect to a horizontal axis through the depot). The
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second phase initializes s and e, With the best cyclic order returned in the first phase. In the
first phase, we set the termination criteria via 7y = 100 and A = 20. In the second phase, we
set v = 200 and A = 100. Phase one begins with an initial temperature of 10 and phase two
begins with an initial temperature of 5. Based on computational tests that explore a wide set of
parameters, we observe these parameters to perform well for the MCVRPSD instances considered
in this paper. We vary the inner-loop iteration counter 3 as part of our computational experiments

in §6.

5.2 Cyclic-Order Updating Procedure

As discussed by Goodson et al. (2012), evaluation of a cyclic order is a two-step process. First, a
set of candidate routes is generated. Second, the optimal routing solution with respect to the set of
candidate routes is identified. When generating a neighbor cyclic order from a current cyclic order
in a local search procedure, Goodson et al. (2012) show the respective sets of candidate routes may
contain many of the same routes. To avoid the unnecessary task of generating these routes again,
Goodson et al. (2012) develop an updating procedure to obtain the set of candidate routes for a
neighbor cyclic order by updating the set of candidate routes for the current cyclic order.

Goodson et al. (2012) employ their updating scheme to reduce the computational expense of
a local search procedure for a single-compartment VRPSD. In their single-compartment problem,
the primary operational constraint is a restriction on the expected demand assigned to an a priori
vehicle route. The cyclic-order updating procedure of Goodson et al. (2012) exploits the fact that
the expected load assigned to a route does not decrease when a customer is inserted into the route,
regardless of the insertion point. In the MCVRPSD we consider in this paper, the main constraint
is a limit on expected duration of an a priori route. Because the a priori MCVRPSD policy does
not allow preemptive capacity replenishment, inserting a customer in an a priori route can lead to
opportune route failures that decrease the expected route duration. Consequently, the cyclic-order
updating procedure of Goodson et al. (2012) requires modification.

The example in Figure 1 illustrates how the expected duration of an a priori route can decrease

when an additional customer is inserted. The example displays a depot (node 0) and four customers
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Single-Compartment Vehicle with Capacity of 30 Demand Units

Possible
Customer Demands Probabilities

@ 1 15 1
2 10 1
@ @ @ 3 5,15 1/5, 415
4 10 1
0 A Priori Route Expected Duration
(0,2,3,4,0) 14.4
(0,1,2,3,4,0) 14.0

Figure 1: Effect of Customer Insertion on Expected Route Duration

(nodes 1, 2, 3, and 4) with Manhattan distances defined by a unit grid. The table in the top-right
portion of Figure 1 indicates that demands for customers 1, 2, and 4 are deterministic and that
demand for customer 3 is stochastic. The table in the bottom-right portion of Figure 1 displays
the expected duration of two a priori routes for a single-compartment vehicle with a capacity of
30 demand units. When demand at customer 3 is 5 units, the duration of route (0,2,3,4,0) is 8;
when demand at customer 3 is 15 units, a route failure occurs at customer 4, resulting in a duration
of 16. Route (0,1,2,3,4,0) experiences a route failure at customer 3 regardless of the demand
realization, resulting in durations of 14. Thus, the expected duration decreases from 14.4 to 14.0
when customer 1 is added to the beginning of the visit sequence.

To account for the possibility of a decrease in route duration when additional customers are
inserted into an a priori route, we modify Proposition 1 of Goodson et al. (2012) by removing the
latter portion of the proposition. Proposition 3 displays the modification, which uses the cyclic-
order notation employed by Goodson et al. (2012). We modify the updating procedures accordingly
by removing the “else break™ statements in Algorithms 2, 3, and 4 of Goodson et al. (2012).
Specifically, in Algorithm 2 of Goodson et al. (2012), we remove lines 15, 16, 26, 27, 37, and
38; in Algorithm 3 of Goodson et al. (2012), we remove lines 22 and 23; and in Algorithm 4 of
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Goodson et al. (2012), we remove lines 19, 20, 30, and 31. Removing the “else break™ statements
potentially requires additional iterations of the associated loops. However, the remaining lines in
each loop require only a check of the cardinality of certain portions of the candidate route set,
an O(1) operation. Thus, the modified updating procedure does not experience a significant slow

down due to additional loop iterations.

Proposition 3 (Modified Updating Procedure). Foralli,j € {1,...,n}, if|R(n(i))| > dist(i,)),
then |A (7 (i), (7)) = |R(r(i))| — dist(i, ).

6 Computational Results

We perform two sets of computational experiments. Problem instances are described in §6.1. In
§6.2, we explore the computational behavior of the exact MCVRPSD a priori policy evaluation
procedure of §4.1 and examine the performance of the simulation-evaluation procedure proposed
in §4.2. In §6.3, we study how our cyclic-order-based simulated annealing procedure performs
relative to methods from the literature. As discussed in §5, because the literature does not report
exact solution values for the benchmark problem instances, and to ensure a fair comparison, our
simulated annealing procedure evaluates a priori policies via the take-all approximation. We im-
plement our procedures in C++ and execute all computational experiments on 2.8GHz Intel Xeon

processors with 12-48GB of RAM running the CentOS 5.3 operating system.

6.1 Problem Instances

We perform computational experiments on the set of 180 benchmark problems employed by Men-
doza et al. (2010, 2011). The problems are composed of three sets of 60 with N = 50, N = 100,
and N = 200 customer instances, respectively. Customers are spread randomly over a Euclidian
space. Each customer has demand for P = 3 products. Demand for product p at customer 7 is
normally distributed with a mean value chosen randomly from the range [10, 100]. In each set of 60
problems, half of the instances set the standard deviation such that the coefficient of variation is 0.1

and half of the instances set the standard deviation such that the coefficient of variation is 0.3. The
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duration limit for a given problem is set to L. = a-max,ean jo} t(0, n), where « is chosen randomly
from the range [3, 4]. Compartment capacity (), for product p is set to 10 - max,ecpn (o} E[Dp ),
rounded to the nearest integer (this corrects a minor oversight in Mendoza et al. (2010, 2011)).
Setting capacities in this fashion guarantees the ratio of compartment capacity to each customer
demand is at least 10, thereby ensuring the take-all scheme yields a very accurate approximation

of the expected cost of an a priori policy (Mendoza et al., 2008).

6.2 Exact Evaluation versus Simulation

To study the computational requirements of the exact MCVRPSD a priori policy evaluation proce-
dure of §4.1, we apply Algorithm 1 to a priori routes with various numbers of products, locations,
and support sizes. We allow the number of products P to take on values in the set {1,2,3,4,5,6}.
We consider route sizes |v| in the set {3,4,5,6,7}. Because the depot is the first and last loca-
tion, these routes serve 1, 2, 3, 4, and 5 customers, respectively. Each customer on the route has
the same support for each demand and for each product. Supports sizes |S(D,,,)| take on val-
ues in the set {1,3,5}. These parameter combinations lead to 90 different a priori routes. For
each route, we calculate the exact policy value via Algorithm 1 and estimate the policy value via
equation (9) with the number of randomly generated demand vectors / taking on values in the
set {10, 100, 1000, 10000, 100000}. In our implementation, expanding parameters beyond these
values is often not possible due to Algorithm 1’s demands on computer memory.

We perform our experiments on problem instance number 1 of Mendoza et al. (2010, 2011);
Appendix C identifies this problem instance. We use only the customer locations specified in the
problem. An a priori route with = customers is the sequence v = (vg = 0,v; = 1,v3 =2,... v, =
x,v,01 = 0). We set all compartment capacities to 20 demand units. Customer demands for
each product follow a discrete uniform distribution with mean 10 and support in the range [5, 15].
Specifically, for sizes of 1, 3, and 5, we set customer demand supports for each product to {10},
{5,10, 15}, and {5,7.5,10,12.5, 15}, respectively.

Tables 1, 2, and 3 display the computing time required for various numbers of products, support

sizes, and route sizes, respectively. The first column of each table lists the respective parameters.
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Table 1: Change in Computing Time with Number of Products
CPU Seconds

P Exact Estimate (H=100,000)

1 0.00 0.72
2 0.00 0.71
3 001 0.72
4 025 0.72
S 724 0.75
6 218.83 0.73

The second and third columns of each table show the number of CPU seconds, averaged across
all other parameters, required to exactly calculate and estimate the value of MCVRPSD a priori
policies. Tables 1 and 2 support Proposition 2: the computation required to execute Algorithm 1 is
exponential in the number of products and the size of the supports. Table 3 demonstrates compu-

tation time also increases with route size, although not as dramatically.

Table 2: Change in Computing Time with Support Size

CPU Seconds
|S(D,.»)] Exact Estimate (H=100,000)

1 0.00 0.72
3 0.14 0.74
5 113.02 0.72

Because optimization routines often evaluate large numbers of MCVRPSD a priori policies,
utilizing the exact evaluation procedure of Algorithm 1 is only practical for small problem instances
where the result can be obtained in a reasonable amount of time. For problems of practical interest,
policy value estimation provides a computationally viable alternative. In contrast to the exact
evaluation procedure, Tables 1, 2, and 3 suggest computing time required to estimate policy values

is nearly constant across product number, route size, and support size. Although in principle
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Table 3: Change in Computing Time with Route Size
CPU Seconds

Exact Estimate (H=100,000)

=

3 0.00 0.73
4 396 0.71
5 11.38 0.72
6 4381 0.73
7 129.46 0.74

Table 4: Change in Computing Time with Number of Randomly Generated Demand Vectors
H CPU Seconds

10 0.00
100 0.00
1,000 0.01
10,000 0.07
100,000 0.72
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we should observe an increase in CPU time as various parameter values increase, this growth
is insignificant compared to the computational overhead required to manage the data structures
facilitating the experiment. As demonstrated by Table 4, the number of CPU seconds required to
estimate policy values grows linearly with /, the number of randomly generated demand vectors.
Thus, evaluation via simulation is a computationally attractive alternative to exact evaluation.

For a route with size |v| = 7, P = 6 products, and customer supports of size |S(D,, ,)| = 3,
Figure 2 graphically depicts simulation estimation error relative to the exact policy value and to
the take-all approximation. For each value of /, the error bars represent the 95 percent confidence
interval around the estimate. As expected, the estimate becomes more accurate and confidence
interval widths decrease with an increase in sample size. Because we use Algorithm 1 to obtain
the take-all approximation (modified as described in §5), the computing time is comparable to the
time required to calculate the exact value. When convolutions are straightforward to compute,
the method of Mendoza et al. (2008, 2009, 2011) quickly obtains the take-all value. For a more

in-depth comparison of exact versus approximate values, we refer to Mendoza et al. (2008).

6.3 Benchmark Performance

We explore the performance of our cyclic-order simulated annealing procedure with different val-
ues of 3, the number of neighbor cyclic orders generated at each temperature in Algorithm 2. For
each of the 180 benchmark problems, and for each value of (5 in the set {1000, 3000, 5000, 7000,
10000, 15000}, we execute our simulated annealing algorithm 10 times.

Figure 3 summarizes the results of our experiments. The horizontal axis displays the values
of 8 we consider, bars are associated with the left vertical axis, and lines are associated with the
right vertical axis. We aggregate results by 50-, 100-, and 200-customer problem instances. For
a given problem instance and value of (3, we calculate the percent decrease in cost of our average
solution value across 10 runs over the value of the best-found solution of Mendoza et al. (2010,
2011). We also calculate the percent decrease in cost of the best solution value across 10 runs over
the value of the best-found solutions of Mendoza et al. (2010, 2011). The percent decreases in cost

over best-known solution values are displayed in the bar series. Two numbers are displayed over
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each member of the “best” bar series. The top number indicates the number of problem instances,
out of 60, for which our best-found solution value improves upon the best-found solution value of
Mendoza et al. (2010, 2011). The bottom number indicates the number of problem instances, out
of 60, for which our best-found solution value matches the best-found solution value of Mendoza
et al. (2010, 2011). For example, when 8 = 1000 and N = 50 customers, the average percent
decrease in cost of our best-found solution values over the best-found solution values of Mendoza
et al. (2010, 2011) is 0.37 percent; our best-found solution values improve upon the best-found
solution values of Mendoza et al. (2010, 2011) in 37 of 60 problem instances; our best-found
solution values match the best-found solution values of Mendoza et al. (2010, 2011) in 21 of 60
problem instances; and our best-found solution values do not improve upon or match the best-found
solution values of Mendoza et al. (2010, 2011) in 2 of 60 problem instances. For a given problem
instance and value of 3, we calculate the average CPU minutes across 10 runs of our simulated
annealing procedure. A point on a line series aggregates this average across 60 problem instances.
For example, when 5 = 1000 and N = 50 customers, the average number of CPU minutes required
to execute a single run of the simulated annealing algorithm is 3.16. Disaggregated results of our
computational experiments are provided in Appendix C.

The bar series in Figure 3 indicate that best and average percent decrease in cost over best-
known solutions values increases as /3 increases. This trend is expected, although improvements
over best-known solution values are more pronounced for problem instances with 100 and 200
customers. Moreover, for these larger problems, our cyclic-order simulated annealing procedure
improves the best-known solution values on all 120 instances when /3 is 7000 and larger. Collec-
tively, we improve the best-known solution values on 159 of 180 problem instances and match the
best-known solution values on the remaining 21 problem instances. Because our cyclic-order so-
lution procedure is not tailored to the MCVRPSD, these results, in conjunction with the results of
Goodson et al. (2012), support cyclic-order-based local search as an effective solution procedure
for a variety of routing problems.

Figure 3 shows computation times tend to increase linearly with /3, but at a steeper rate for

larger problem instances. Figure 3 also indicates a positive correlation between computation time
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and percent decrease over best-known solution values, particularly for larger problem instances.
Thus, the choice of parameter 5 may be used to manage the tradeoff between computation time
and solution quality. Because most practitioners use a priori routes over extended periods of time
(Savelsbergh and Goetschalchx, 1995), a large upfront investment in computing time may be ac-
ceptable. However, the computational requirements of our procedure may be prohibitive if the
method is to be used as part of a heuristic scheme to dynamically manage vehicle operations (e.g.,
Goodson et al. (2013)). In such cases, the construction heuristics of Mendoza et al. (2011) may

yield adequate-quality solutions in acceptable CPU times.

7 Conclusion

We propose methods to estimate and exactly calculate the value of a priori MCVRPSD policies.
Our exact procedure requires exponential time to execute, but leads to a simulation scheme that
provides unbiased and consistent estimates of the value of an a priori MCVRPSD policy. We incor-
porate our estimation procedure into a cyclic-order-based simulated annealing algorithm. Without
tailoring our solution procedure to the MCVRPSD, we significantly improve upon the best-known
solution values reported in the literature. We also extend the updating procedure for a cyclic order’s
candidate route set to duration-constrained a priori policies.

A promising direction for future research is to expand upon the classical detour-to-depot a
priori policy considered in this paper. Allowing preemptive capacity replenishment is one way to
accomplish this. For a given sequence of customers, Pandelis et al. (2012) provide a procedure to
obtain the optimal restocking policy. However, Pandelis et al. (2012) do not explore methods to
improve the customer sequence to potentially obtain a restocking policy with lower expected cost.
Incorporating the method of Pandelis et al. (2012) into a local search procedure may yield policies
with lower costs than the policies we obtain in this paper. Vehicle coordination may also result
in lower-cost policies. One possibility is to extend the paired-vehicle recourse strategy of Ak and
Erera (2007) to the multi-compartment case. Alternatively, allowing multiple vehicles to satisfy

demands for different products at a single customer may yield savings. This direction is explored
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in the literature for multi-compartment vehicle routing problems with deterministic demands, but
has yet to be addressed when demands are stochastic.

It may also be possible to augment our models to capture variation in travel times. Although
the addition of stochastic travel time is likely to further complicate the optimization, accounting
for such variability may provide a more realistic model. A deterministic alternative to modeling
travel times as random variables is to set different travel durations as a function of time of day. The

work of Figliozzi (2012) may serve as a baseline for incorporation of time-dependent travel times.
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A Notation Guide

Table 5 displays commonly used variables and their definitions.

Table 5: Guide to Primary Notation

Variable

Description

N ={0,1,...,N}
M={1,2,....M}
P={1,2,...,P}

Node set
Vehicle set

Product set

Qp Compartment for product p
np Random demand for product p at customer n
dpp Realization of D,, ,
Fp,,() Distribution function for D,, ,,
S(Dnyp) Support for D, ,
t(n,n’) Time to travel from location n to location n’
L Route duration limit
v A set of a priori routes or a single a priori route
Ay, Random time of initial arrival to customer v;
Ay, Realization of A,,
Coip Random capacity of compartment p upon initial arrival to customer v,
Coy p Realization of C,, ,,
H Number of randomly generated demand vectors
6] Number of inner loop simulated annealing iterations
B Proofs

Proof of Proposition 1

We first prove equation (7).
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P{C,, = c,A,, = a}
- Z Z Z]P {C”i =6 A“i = a}CUifl = Cl? Avi—l = a‘/’ Dvi71 = d/} (10)
a o

C/

P{C,,_, =, A, =d,D,_, =d} (11)
=33 Y 1{e=co(d.d)a=a,(d.d a)} (12)
d d a
P
P {Cvi_l =, Ay, = a/} . HfD”i—lﬂp(d;)' (13)
p=1

Equations (10) and (11) hold by the law of total probability. The conditional probability term in
(10) is one if ¢ = ¢,,(d',¢') and a = a,,(d’,,a’) and is zero otherwise. Thus, the conditional
probability term is equivalent to the indicator function in (12). Equation (13) follows from the
independence of demands at customer v;_1, therefore the joint probability of customer demands
can be expressed a product of the marginal probabilities.

We next prove equation (8).

Cop, =¢Ay,_,=0a,D, , = d} (14)

-P{C,,_, =¢, Ay, =0a,D, , =d} (15)

P
= Z Z Z avi (da C, (Z) - ]P {Cvi—l = C, Avi—l = CI,} . H vai—l»P (dp) (16)
d c a p=1

Equations (14) and (15) hold by the law of iterated expectations. Because the expectation in (14)
is conditioned on ¢, a, and d, it is given directly by (6), which we denote by a,,(d,c,a). The
remainder of (16) follows from the independence of demands at customer v;_1, therefore the joint

probability of customer demands can be expressed a product of the marginal probabilities.

Proof of Proposition 2

Because customer demands are no larger than D, the maximum number of route failures experi-
enced at any customer is [D/ Q1. The maximum travel time for one return trip to the depot orig-

inating from any customer on route v is L. Because capacities are assumed to be integer-valued,
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the maximum number of capacity vectors is ) - P. Because customer demands, vehicle capacities,
and travel times are assumed to be integer-valued, the maximum number of capacity-arrival time
combinations at any one customeris L - @Q - P - [D/ Q1. Thus, the loops in lines 5-7 result in line
8 being executed at most (i — 1) - L- Q- P - [D/Q] - 5" times, where S is the largest possible
cardinality of the joint support S(-). Similarly, the loops in lines 9 and 10 result in line 11 being
executed at most L - Q - P - [D/ Ql- S” times. Thus, the computational complexity of Algorithm

1isO@G-L-Q-P-[D/Q]-5").

C Disaggregated Results of Computational Experiments

Table 6 displays the disaggregated solution values for the computational experiments discussed in
§6. The first column displays the instance number (#), the number of customers (/NV), the number
of products (P), and the coefficient of variation for customer demands (CV). The second column
displays the best-found solution values of Mendoza et al. (2010, 2011). The remaining 12 columns
display, for six different values of /3, the best and average solution values across 10 runs of the

cyclic-order simulated annealing procedure.
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