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Abstract

Since the United States presidential election of 2000, political campaigns have deployed vol-

unteer lawyers to provide real-time information and assistance to poll observers. To assist with

the routing of these rapid response attorneys (RRAs) among polling locations, we formulate

two optimization models to equitably and efficiently allocate volunteer resources. We pro-

pose heuristic solution procedures based on simulated and compressed annealing and describe

how our efforts to route RRAs in one state benefited election day operations during the 2012

election.

Keywords: election operations, equitable routing, simulated and compressed annealing.

1 Introduction

Election operations give rise to a variety of operational challenges including routing problems

for voting machine delivery (Fry and Ohlmann, 2009), equitable allocation of voting machines to

precincts (Yang et al., 2013), politician routing (Cook, 2011), political districting (Mehrotra et al.,

1998; King et al., 2012), and excessive voter wait times (Allen and Bernshteyn, 2006). Since

the controversial United States presidential election of 2000, campaigns have devoted significant

resources to ensure polling places follow established procedures. In this paper, we focus on the

management of these resources, specifically the operational task faced by United States campaign

operations teams to efficiently and equitably manage volunteer lawyers on election days. We

discuss the implementation of our methods in one state on election day 2012.
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During United States presidential campaigns, two types of volunteers provide crucial election

day support: poll observers and rapid response attorneys (RRAs). A poll observer assists with

election day activities at polling places by helping election officials identify problems such as

illegal electioneering, voting without proper identification, voting at the wrong polling location,

early opening or late closing of polling locations, intimidation of voters, and insufficient ballots.

RRAs rove among multiple polling locations, providing real-time information, legal expertise, and

assistance to poll observers.

During the 2012 election, one state wanted to determine the most effective and efficient way

to route attorneys among polling locations. The operational task facing the state-level campaign

team required the assignment of each RRA to multiple polling locations and the routing of RRAs

among their assigned locations. Given a sequence of polling locations, a single RRA repeatedly

visits locations throughout the day in the order prescribed by their route. If an urgent issue arises at

a particular location, the RRA travels directly to that polling place, interrupting the assigned visit

sequence. After the issue is resolved, the RRA continues their assigned route from where they left

off.

The operational problem faced by the campaign operations team is characterized by three con-

siderations. First, to enable quick response times to issues requiring immediate attention, the geo-

graphic dispersion of polling locations assigned to each RRA should be tight. Second, prescribed

RRA routes should minimize travel time, affording RRAs more time at polling locations. Third,

with the aim of treating volunteers fairly, the workload should be distributed equitably among

RRAs.

To address these considerations, we develop two optimization models and heuristic solution

procedures to equitably and efficiently route RRAs. Our optimization models differ in their treat-

ment of equitable workload distribution across RRAs. In the first formulation, we follow the guide-

lines imposed by the campaign operations team: an equal number of polling locations is assigned

to each RRA route. Results of this model were implemented in one state on election day 2012. In

the second model we consider an alternative definition of equity based on travel and service time.

In a post-election-day analysis, we explore how these two approaches to modeling equity can lead
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to different routing schemes.

Our solution approach for the first model consists of two stages. In the first stage, we iden-

tify geographically tight clusters of polling locations, operating under the assumption that close

proximity will lead to short RRA travel times among locations in a given cluster. The heuristic

solution procedure employs simulated annealing to guide the search of swap neighborhoods. We

show how to quickly evaluate solutions in the swap neighborhood of a current solution. For small

problem instances where optimal solution values can be verified, our computational results show

that the simulated annealing procedure identifies optimal solutions. Although we tailor our lo-

cal search to the clustering of polling locations, it should be possible to adapt the procedure to

other types of clustering problems. In the second stage, we determine the travel-time-minimizing

visit sequence among polling locations in each cluster by optimally solving small instances of the

classical traveling salesman problem (TSP).

Our solution approach for the second model simultaneously treats assignments of polling loca-

tions and routing decisions. We take as our objective the minimization of total travel and service

time such that the difference between the largest and smallest route travel times satisfies a given

tolerance level. Our compressed annealing heuristic punishes violations of the equity constraint

via a penalty term in the objective function. Computational experiments demonstrate that as the

tolerance for inequity decreases, the total routing cost increases, but only marginally for reasonable

tolerance levels.

The need for quick solution development and easy-to-explain routes were primary drivers be-

hind our choice of the first model and solution procedure. Because of the short time span allotted

to create the solution, the typical phases of problem definition, problem formulation, solution de-

velopment, and implementation proceeded rapidly. Consequently, future implementations may

benefit from deeper exploration of some issues. Our second problem formulation further explores

the issue of equitable work distribution. In the conclusion, we discuss additional issues that may

merit more investigation.

Overall, our statewide routing solution for the 2012 election significantly accelerated the task of

routing RRAs and more efficiently allocated the time of volunteer attorneys. Prior to our involve-
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ment, RRA routes were developed “by hand” and without the guidance of optimization models

and methods. Subsequent applications of our optimization routines are likely to realize even larger

benefits in states where poll observers are placed at larger numbers of polling locations and “by-

hand” routing methods are even more likely to yield suboptimal RRA routes. In particular, as

campaigns rely more and more on person-to-person contact and “grass-roots” politics, the need

for effective workforce management increases. Our work may serve as a baseline for coordinating

microtargeting efforts such as “persuadables” targeting and “get-out-the-vote” targeting. These

and related campaign activities that depend on volunteer work may realize significant productivity

increases by utilizing optimization techniques to guide operational decision making.

The remainder of the paper proceeds as follows. We present our models and solution proce-

dures in §2 and §3. In §4, we report on the application of our methods in one state on election

day 2012 and explore how different treatments of equity lead to different solution structures. We

conclude the paper in §5.

2 Location-Based Equity Model and Solution Procedure

In this section, we model equitable workloads by requiring polling locations to be distributed

equally among RRAs. We present a two-stage solution procedure that first assigns polling locations

to RRAs and second routes RRAs among their assigned polling locations. We formulate the first

stage as a clustering problem in §2.1 and present a heuristic solution method in §2.2. We treat the

second-stage routing problem as a classical TSP. Because the TSP instances we encountered during

the 2012 election were small (no more than nine polling locations), optimal solutions were quickly

identified via enumeration. Alternative solution techniques could be employed for larger problem

instances. We refer the reader to Gutin and Punnen (2002) for a review of exact and heuristic TSP

solution procedures. The remainder of this section focuses on the first-stage solution procedure.
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2.1 Clustering Problem Formulation

The problem of identifying geographically tight groups of polling locations is similar to the multi-

source Weber problem (MWP), a type of clustering problem and a model for many location-

allocation problems. The MWP is characterized by a set of customers (polling places) with given

locations and a set of facilities (RRAs) to be located. The MWP requires facilities to be located and

customers assigned to facilities such that the sum of the Euclidian distances from each customer to

its assigned facility is minimized. Applications of the MWP include partitioning of sales territo-

ries (Fleischmann and Paraschis, 1988) and placement of warehouses (Bhaskaran, 1992), airports

(Saaty, 1972), and emergency services (Dokmeci, 1977). Rosing (1992) and Krau (1997) examine

exact solution methods for the MWP and Brimberg et al. (2000) compare and contrast heuristic

schemes.

The model we design in this section to assign polling locations to RRAs differs from the MWP

in two ways. First, per the guidelines imposed by the campaign operations team, we require RRAs

to service equal numbers of polling locations. Second, because a pairing of a RRA to a group of

polling locations is not entirely analogous to locating a facility, we use geographic centroids to

evaluate solutions. Specifically, we evaluate a feasible solution by summing Euclidian distances

between each polling location and the centroid of that polling location’s group.

Denote the set of polling locations by L = {1, 2, . . . , L}. The horizontal and vertical coordi-

nates of polling location l in L are xl and yl, respectively. We desire to partition the set L among

clusters C = {1, 2, . . . , C}, where we assume C ≤ L, such that the sum of Euclidian distances

from each location to its cluster’s centroid is minimized. To equitably distribute the workload

among RRAs, we require the number of locations assigned to each cluster to be at least bL/Cc and

no more than dL/Ce, where b·c and d·e are the floor and ceiling operators, respectively.

We formulate the optimization problem as a non-linear integer program, with decision variable

zlc set to one if location l is assigned to cluster c and set to zero otherwise. We denote a solution

vector by z = (zlc)l∈L,c∈C .
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{
f(z) =

∑
l∈L

∑
c∈C

zlc
(
(xl − µx

c )2 + (yl − µy
c)

2
) 1

2 : (1)

µx
c =

∑
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l∈L zlc

, c ∈ C, (2)
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∑
l∈L zlcyl∑
l∈L zlc

, c ∈ C, (3)∑
c∈C

zlc = 1, l ∈ L, (4)

max
c∈C

{∑
l∈L

zlc

}
−min

c∈C

{∑
l∈L

zlc

}
≤ δ (5)

zlc ∈ {0, 1}, {(l, c) : l ∈ L, c ∈ C}

}
. (6)

Equation (1) is the objective function, with centroid coordinates defined by equations (2) and (3).

Equation (4) requires each location be assigned to exactly one cluster. Inequity tolerance parameter

δ in equation (5) is a user-supplied integer in the range [1, L] indicating the decision maker’s

tolerance for the difference between the largest number of polling locations assigned to a route and

the smallest. Setting δ = 1 enforces the campaign team’s requirement that each RRA be assigned

at least bL/Cc polling locations and no more than dL/Ce. When δ = 1, equation (5) implies

L mod C clusters each have dL/Ce locations assigned to them and the remaining C − L mod C

clusters are each assigned bL/Cc locations. The simulated annealing heuristic of §2.2 is designed

for the case δ = 1.

In §3, we consider an alternative to constraint (5) and define equity in terms of travel and service

time assigned to each RRA. The computational experiments of §4.3 explore differences between

these two definitions of equity and examine the effects of increasing δ beyond 1.

The number of solution vectors satisfying equation (6) is 2C×L. Constraints (4) reduce this fig-

ure to CL. To identify an optimal solution, one can enumerate these solutions, discarding solutions

not in compliance with constraint (5). In §4.2, we implement this procedure to determine optimal

solution values for small problem instances. For many problems of practical interest, the enumer-

ation procedure becomes computationally prohibitive, unable to identify an optimal solution after

days of computing time. In these cases, we rely on the simulated annealing heuristic described in
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the next section.

2.2 Simulated Annealing Heuristic

To solve clustering problem (1)-(6), we use simulated annealing to guide the search of swap neigh-

borhoods. Simulated annealing is a local search algorithm in which non-improving moves are

probabilistically accepted in an attempt to avoid becoming trapped in a low-quality, locally-optimal

solution (Kirkpatrick et al., 1983; Johnson et al., 1989, 1991). We choose simulated annealing to

direct the search because of its wide success across a variety of problem types and for its straight-

forward implementation. Further, in contrast to most metaheuristics, simulated annealing con-

verges in probability to the set of global minima (Hajek, 1988).

Given a feasible assignment of locations to clusters, the swap neighborhood consists of all

solutions that can be obtained by swapping location l assigned to cluster c with location l′ assigned

to a different cluster c′. More formally, to construct a solution vector z̄ in the swap neighborhood

of z, first select location l from {l̂ : zl̂c = 1} and location l′ from {l̂ : zl̂c′ = 1}. Then, set z̄ equal to

z and perform the swap by subsequently setting z̄lc = 0, z̄l′c′ = 0, z̄lc′ = 1, and z̄l′c = 1. Solutions

in the swap neighborhood of a feasible solution are also feasible because they satisfy constraints

(4)-(6).

A solution vector z̄ obtained from z by swapping two polling locations in clusters c and c′ can

be evaluated by directly calculating f(z̄) via equation (1). However, because z̄ differs from z in

the assignment of only two polling locations, the computation required to calculate f(z̄) can be

reduced by modifying f(z) to reflect the changes in clusters c and c′. Algorithm 1 details the proce-

dure, where we assume centroid coordinates for each cluster in solution vector z have been stored.

Line 1 calculates the new centroid coordinates for clusters c and c′ of solution vector z̄. Line 2

initializes f(z̄) with f(z). Lines 3 and 4 subtract from f(z̄) the objective function contributions of

clusters c and c′ in solution vector z. Finally, lines 5 and 6 add to f(z̄) the objective function con-

tributions of updated clusters c and c′ in solution vector z̄. Our computational experience suggests

Algorithm 1 significantly reduces the computation required to evaluate a solution.

Our simulated annealing procedure is displayed in Algorithm 2. Three solution vectors are
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Algorithm 1 Evaluation of z̄ in the Swap Neighborhood of z
1: For z̄ calculate centroid coordinates µx

c , µy
c , µx

c′ , and µy
c′ via equations (2) and (3)

2: f(z̄)← f(z)

3: f(z̄)← f(z̄)−
∑

l∈{l̂:zl̂c=1} ((xl − µx
c )2 + (yl − µy

c)
2)

1
2

4: f(z̄)← f(z̄)−
∑

l∈{l̂:zl̂c′=1} ((xl − µx
c′)

2 + (yl − µy
c′)

2)
1
2

5: f(z̄)← f(z̄) +
∑

l∈{l̂:z̄l̂c=1} ((xl − µx
c )2 + (yl − µy

c)
2)

1
2

6: f(z̄)← f(z̄) +
∑

l∈{l̂:z̄l̂c′=1} ((xl − µx
c′)

2 + (yl − µy
c′)

2)
1
2

maintained – zbest, zcurr, and zneigh – corresponding to the best-found, the current, and a neighbor

solution vector, respectively. An iteration of the inner loop begins on line 3 by randomly selecting

a solution zneigh from the swap neighborhood of current solution zcurr. Line 4 probabilistically

updates zcurr with zneigh, where (a)+ = a if a > 0 and 0 otherwise and τ is the current temperature

(a control parameter in simulated annealing). Lines 5 and 6 update the best-found solution vector.

The inner loop terminates after 10,000 iterations. The outer loop implements a geometric cooling

schedule with a temperature multiplier of 0.99 and terminates after at least 1000 iterations and

without having updated the best-found solution for 500 successive iterations. We set the initial

temperature to τ = 5. To obtain an initial feasible solution, we randomly assign polling locations to

clusters such thatL mod C clusters each have dL/Ce locations assigned to them and the remaining

C−L mod C clusters are each assigned bL/Cc locations. Our computational experience suggests

these parameters yield high-quality solutions for the problem instances we consider in this work.

3 Time-Based Equity Model and Solution Procedure

Per the request of the campaign operations team, we modeled equitable workloads in §2 by assign-

ing equal numbers of polling locations to RRAs. This requirement, combined with a very short

timetable for development and implementation, prevented the exploration of alternative models for

equitable work distribution. In this section, we present a post-election-day analysis that treats eq-

uity in terms of route duration and service time. Our model allows the decision maker to determine

the level of equity he or she deems necessary.
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Algorithm 2 Simulated Annealing Procedure
1: repeat

2: repeat

3: Randomly select zneigh in the swap neighborhood of zcurr

4: zcurr ← zneigh with probability exp{−(f(zneigh)− f(zcurr))
+/τ}

5: if f(zcurr) < f(zbest) then

6: zbest ← zcurr

7: until 10,000 iterations

8: τ ← τ × 0.99

9: until At least 1000 iterations and not update zbest for 500 successive iterations

A time-based approach to equity was motivated by the route structures obtained via solution

method one: due to the geographic spread of polling locations in some regions, travel times for

some routes were much longer than travel times for other routes. Consideration of service time

in addition to route duration balances travel time with the number of polling locations assigned to

each RRA. We present our problem formulation in §3.1 and a heuristic solution procedure based

on compressed annealing in §3.2.

3.1 Problem Formulation

In contrast to the two-stage approach of §2, the problem formulation in this section simultaneously

treats assignments of polling locations and routing decisions. As in §2.1, let C = {1, 2, . . . , C} be

a set of C RRAs. Denote by vc = (vc1, v
c
2, . . . , v

c
Ic) a sequence of Ic locations assigned to RRA c

in C, where each vci on route vc belongs to the set of polling locations L = {1, 2, . . . , L}. Denote

by v = (vc)c∈C a collection of RRA routes such that each polling location in L appears exactly

once on exactly one route in v and at least one polling location is assigned to each route. Denote

by t(l, l′) the travel time from polling location l to polling location l′ and by sl the average service

time at polling location l. Let g(vc) = t(vcIc , v
c
1) + s1 +

∑Ic

i=2(t(vci−1, v
c
i ) + si) be the total time

required to traverse and service route vc and let h(v) =
∑

c∈C g(vc) be the total time required to

traverse and service all routes. Denoting by V the set of all route collections, the problem we seek
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to solve is

min

{
h(v) : (7)

max
c∈C
{g(vc)} −min

c∈C
{g(vc)} ≤ γ, (8)

v ∈ V
}
, (9)

where γ is a parameter supplied by the user to control tolerance of inequity, as defined by the

difference between the largest and smallest route times. Large values of γ permit large differences

in route times while small values require route times to be similar. Thus, by selecting appropriate

values for γ, the decision maker can enforce strict equity among RRA assignments, can disregard

equity altogether, or can select an intermediate alternative.

Problem (7)-(9) is most similar to the no-depot multiple TSP of Na (2006), which takes as

the objective to minimize the longest route. Although a minimax objective is an often-employed

inequity metric, for routing problems, minimizing the longest route does not guarantee efficient

visit sequences for routes with shorter travel and service times. The inequity measure we employ

in the left-hand side of constraint (8) is referred to by Yang et al. (2013) as a range metric. For

a class of resource allocation problems, Yang et al. (2013) take as their objective to minimize

the range of inequity. In the routing context, because a wide array of route collections might

achieve similar range values, we incorporate the range metric into the constraint set and keep as

our objective the minimization of total travel and service time. This scheme gives preference to

efficient routings that satisfy the given tolerance for inequity.

3.2 Compressed Annealing Heuristic

Problem (7)-(9) is composed of two main parts, a no-depot multiple TSP and an inequity constraint.

The no-depot TSP is a NP-hard optimization problem and the inequity constraint presents addi-

tional feasibility difficulties. Using a penalty-based approach, we partially decompose these two

components and conduct a heuristic search. We consider infeasible solutions by relaxing inequity

constraint (8) into the objective function with penalty
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p(v) = max

{
0,max

c∈C
{g(vc)} −min

c∈C
{g(cc)} − γ

}
, (10)

a function returning the portion of the range inequity exceeding tolerance parameter γ. Letting λ

be a non-negative penalty multiplier, the relaxed problem we seek to solve is

min {h(v) + λp(v) : v ∈ V} . (11)

Any route collection v with penalty p(v) = 0 is a feasible solution to both problems (11) and

(7)-(9). Further, Hadj-Alouane and Bean (1997) show that for a sufficiently large λ, relaxed prob-

lem (11) enjoys strong duality with original problem (7)-(9).

We employ compressed annealing to solve problem (11) in search of high-quality solutions

to problem (7)-(9). Compressed annealing varies the penalty multiplier λ, referred to as “pres-

sure,” within the framework of traditional simulated annealing (Ohlmann et al., 2004). Over the

course of the heuristic search, pressure is increased, thereby biasing the solution landscape toward

inequity-feasible solutions satisfying constraint (8). We utilize compressed annealing to direct the

search because of its success in other problem domains and because it provides a straightforward

method for penalty-based local search. Further, unlike the vast majority of metaheuristic methods,

compressed annealing converges in probability to the set of global minima (Ohlmann et al., 2004).

We use compressed annealing to guide the search of relocation neighborhoods. The relocation

neighborhood of a route collection in V consists of all route collections that can be obtained by

moving a single customer to a different position on the same route or on a different route. Pro-

hibiting relocations that result in empty routes, all route collections in the neighborhood of a given

solution remain feasible for problem (11). We implement relocation neighborhoods as discussed

in Kindervater and Savelsbergh (2003), calculating solution costs via standard “delta” evaluations.

Our compressed annealing procedure is detailed in Algorithm 3. As with the simulated an-

nealing procedure described in §2.2, three solution vectors are maintained – vbest, vcurr, and vneigh –

corresponding to the best-found, the current, and a neighbor route collection, respectively. Line 1

initializes iteration counter k to zero. An iteration of the inner loop begins on line 4 by randomly

selecting a route collection vneigh from the relocation neighborhood of current collection vcurr. Line
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5 probabilistically updates vcurr with vneigh, where parameter τ is the current temperature. Lines 6

and 7 update the best-found solution to be the least infeasible route collection with the smallest

total travel and service time. The inner loop terminates after 80,000 iterations. The outer loop

increments k, updates the temperature via a geometric cooling schedule with a temperature mul-

tiplier of 0.99, and updates the pressure via a limited exponential compression schedule with a

pressure cap of 900,000 and a compression coefficient of 0.06. The outer loop terminates after at

least 800 iterations and without having updated the best-found route collection for 100 successive

iterations. We set the initial temperature to τ = 350 and the initial pressure to λ = 0. We obtain

an initial route collection by randomly assigning polling locations to RRAs such that each RRA is

assigned to at least one polling location. Our selected parameter values are tailored to our largest

problem instance and are obtained via the insights of Ohlmann and Thomas (2007).

Algorithm 3 Compressed Annealing Procedure
1: k ← 0

2: repeat

3: repeat

4: Randomly select vneigh in the relocation neighborhood of vcurr

5: vcurr ← vneigh with probability exp{−(h(vneigh) +λp(vneigh)−h(vcurr)−λp(vcurr))
+/τ}

6: if p(vcurr) ≤ p(vbest) and h(vcurr) < h(vbest) then

7: vbest ← vcurr

8: until 80,000 iterations

9: τ ← τ × 0.99

10: k ← k + 1

11: λ← 900, 000(1− exp{−0.06k})

12: until k ≥ 800 iterations and not update vbest for 100 successive iterations
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4 Computational Experience

In §4.1, we describe the problem instances encountered in one state during the 2012 United States

presidential election. In §4.2, we report on the application of the location-based equity model and

solution procedure to route RRAs on election day 2012. In §4.3, we use the location- and time-

based equity models and solution procedures to explore the tradeoffs associated with inequity

tolerance.

We implement our procedures in C++ and execute all experiments on 2.8GHz Intel Xeon pro-

cessors with 12-48GB of RAM and the CentOS 5.3 operating system. The annealing procedures

outlined in §2.2 and §3.2 execute quickly, requiring less than one CPU minute for the largest prob-

lem instance.

4.1 Problem Instances

We were told poll observers would be located in 208 polling locations among nine regions across

the state. The first three columns of Table 1 display the number of polling locations and RRAs

assigned to each region. Regions 1-6 were each assigned two or more RRAs and regions 7-9 were

each assigned one RRA. We discuss the remainder of Table 1 in §4.2.

We use the latitude and longitude of each polling location as the horizontal and vertical co-

ordinates required as input to the clustering problem described in §2.1. To convert physical ad-

dresses into latitude and longitude coordinates we use a batch geocoder publicly available at

www.findlatitudeandlongitude.com/batch-geocode. An important feature of this

geocoder was the ability to check the accuracy of the conversion process. The accuracy report led

us to correct several address entry errors.

As input for routing optimization, we estimate the travel time between each pair of polling

locations in each region. To do this, we first modify the standard Euclidian distance matrix to

approximate city driving. Given polling locations l and l′ with latitude and longitude coordinates

(latl, longl) and (latl′ , longl′), we approximate the driving distance dll′ between l and l′ as suggested

by Simchi-Levi et al. (2003): dll′ = ρ69((longl − longl′)
2 + (latl − latl′)2)

1
2 miles, where 69 is
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Table 1: Location-Based Equity First-Stage Results

Region RRAs (C) Polling Locations (L) Optimal Annealing

1 14 119 – 2.205

2 3 24 – 0.395

3 2 16 0.562 0.562

4 2 12 0.206 0.206

5 2 11 0.159 0.159

6 2 10 0.165 0.165

7 1 9 N/A N/A

8 1 5 N/A N/A

9 1 2 N/A N/A

the approximate number of miles per degree of latitude in the continental United States and ρ is

a “circuity factor,” suggested by Simchi-Levi et al. (2003) to be 1.3 for the regions of the state

included in our study. We estimate the travel time between locations l and l′ as tll′ = (60/rll′)dll′

minutes, where rll′ is the average driving speed in miles per hour from location l to location l′.

Given the location of most polling places, we set rll′ = 25 for all l, l′ pairs. We set the average

service time for each polling location l to sl = 15 minutes, the average time RRAs were expected

to spend at a polling location. Although our method for approximating driving distances and travel

times has been proven useful in practice, improved estimates could be obtained via specialized

mapping software.

4.2 Application on Election Day 2012

For regions 1-6, we assign polling locations to RRAs via the two-stage optimization routine out-

lined in §2. Per the campaign team’s requirement, inequity tolerance parameter δ is set to 1 in

equation (5). Because regions 7-9 were each assigned one RRA, we perform only the second-stage

routing optimization as clustering is unnecessary.

The small sizes of the clustering problems for regions 3-6 allow the feasible solution spaces
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to be enumerated and the optimal solutions to be quickly identified via the enumeration method

discussed in §2.1. The fourth column of Table 1 displays the optimal solution values and the

fifth column shows the best solution values returned by 10 executions of our simulated annealing

heuristic on each problem instance with two or more RRAs. For regions 3-6, the annealing heuristic

identifies an optimal solution. To provide a point of comparison for region 2, we benchmark

against the performance of the Microsoft Excel non-linear solver, the spreadsheet-based solver

that would have been available to the campaign operations team. The Excel solver identifies a

solution value of 0.397, a 0.5 percent increase over the solution value identified by the simulated

annealing algorithm. The annealing procedure and the Excel-based method both terminate in less

than one minute. Because the size of the optimization problem for region 1 exceeds the limits of

even the premium version of the Excel non-linear solver, a similar comparison for region 1 is not

possible. However, the performance of the annealing procedure in regions 2-6 suggest the solution

obtained for region 1 is of high quality.

The optimization-based solutions also improve upon manually-obtained solutions. This was

particularly true in region 1 where a “by-hand” clustering method achieved an objective value of

2.409, a 9.25 percent increase over simulated annealing’s clustering solution for the minimization

problem. Converting objective values to miles, the annealing-based solution decreases total dis-

tance to cluster centroids from 216 to 197 miles. The degree to which this level of improvement is

meaningful depends on how crucial a given area is to the outcome of the election. In swing states,

for example, even incremental increases in RRA efficiency can be impactful. A further benefit is

the ability to automate the creation of RRA routes, a task that, prior to our involvement, required

weeks of volunteer time.

We used the Google Maps API (publicly available at https://developers.google.

com/maps/) to develop an interactive, visual implementation of the RRA routes resulting from

our optimization routines. Figure 1a displays the routes developed for region 1.1 In Figure 1a,

markers of the same color denote polling locations assigned to a RRA and numbers in markers

1To maintain confidentiality, Figure 1 translates the locations of polling places in region 1 to a different area in the

United States.
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a. Location-Based Equity b. Time-Based Equity 

Figure 1: Routing Comparison for Region One

of the same color indicate the visit sequence. Similar maps were developed for each region and

each RRA received a map displaying only their assigned route. The visual depiction of the routes

produced by our procedure increased solution transparency and facilitated a seamless transition

from the output of optimization routines to implementation on election day. Further, the maps and

optimization routines were major contributors to a successful operation, significantly accelerating

the process of routing RRAs.

4.3 The Cost of Equity

In this section, we explore the tradeoffs associated with parameters δ and γ, the tolerance level for

inequity across polling location assignments in our location-based equity model and the tolerance

level for inequity across route times in our time-based equity model, respectively. In this post-

election-day analysis, we examine the effects of varying γ via the compressed annealing procedure
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Figure 2: Effect of Inequity Tolerance Level δ on Euclidian Distance

of §3.2 and explore the impact of varying δ via a similar compressed annealing algorithm that

penalizes violations of equity constraint (5). Throughout this section, we focus on region 1, the

largest problem instance encountered during our work with the 2012 election.

Figures 2 and 3 facilitate the analysis. The line series in Figure 2 displays the total Euclidian

distance to cluster centroids f(z) achieved for values of δ ranging from 1 to 11. Increasing δ

beyond 11 renders inequity constraint (5) non-binding. Similarly, the line series in Figure 3 shows

the total travel and service times h(v) achieved for values of γ ranging from 20 to 700 minutes.

For values of γ less than 20, the compressed annealing procedure identifies few route collections

satisfying inequity constraint (8). For values of γ greater than or equal to 10, feasible solutions

are discovered, but increasing γ beyond 700 minutes renders inequity constraint (8) non-binding.

The series marked by a cross in Figure 2 depicts four time-based equity solutions evaluated via

the objective value of the location-based equity model. Likewise, the series marked by a cross in

Figure 3 displays four location-based equity solutions evaluated via the objective of the time-based

equity model. Above each marker is the value of δ or γ leading to the corresponding solution.
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Figure 3: Effect of Inequity Tolerance Level γ on Total Travel and Service Time

Figure 2 indicates total Euclidian distances to cluster centroids increases as inequity tolerance

decreases. Although growth occurs more rapidly as δ is decreased below five, the overall rise in

cost is not too drastic. When δ is set to 11, f(z) is 1.992, whereas when δ is set to one, f(z) is

2.205, representing a 10.69 percent increase. Converting these figures to miles, decreasing δ from

11 to one reduces total mileage to cluster centroids from 198 to 179.

Examining the second series in Figure 2, we see a decrease in time-based inequity tolerance γ

does not necessarily lead to a reduction in location-based inequity. Specifically, when γ is reduced

from 50 minutes to 20 minutes, the spread in the number of polling locations assigned to routes

increases from three to four. Further, the location-based cost of the time-based solution is nearly

double the cost achieved by the location-based solution method. Thus, using time-based equity

may not be a valid substitute for location-based equity.

Figure 3 indicates total travel and service time increases as inequity tolerance decreases. Al-

though sharp growth ensues when γ approaches 20 minutes, the rise in routing cost is otherwise

moderate. When γ is set to 700, routing cost h(v) is 2092.84, whereas when γ is set to 30, h(v)
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is 2189.69, representing only a 4.63 percent increase in total travel and service time. Thus, for

region 1, reasonable levels of inequity tolerance are possible in exchange for incremental increases

in routing cost.

Although routing costs are similar at very different values of inequity tolerance, route structures

are markedly different. For larger values of γ, the bulk of the polling locations is assigned to only a

few RRAs. As γ is decreased, the number of polling locations is spread across RRAs more evenly,

more closely resembling the original equity requirement of the campaign operations team. In fact,

when the inequity tolerance is set to 30 minutes, the largest number of polling locations assigned

to a single route is 10 and the fewest is seven. This difference of three is only two shy of the

campaign’s equity condition δ = 1.

The second series in Figure 3 suggests that decreasing δ in the location-based equity model

generally leads to routing schemes with less time-based inequity. The point marked by δ = 1

is the location-based equity solution implemented on Election Day 2012. The total travel and

service time achieved by this route collection is 2204.50 and the difference between the largest

and smallest route times is 51.26 minutes. Taking the latter value to be γ, the time-based equity

routing cost is 2178.57, a 1.18 percent decrease over the location-based equity routing scheme.

Excluding the total service time, which remains fixed for all solutions, the time-based equity rout-

ing cost decreases the location-based equity routing cost by 6.18 percent. Figures 1a and 1b place

these two routing structures side-by-side. The second route collection, which measures inequity

based on differences in route and service times, assigns fewer polling locations to RRA routes

in less-geographically-dense areas relative to the first route collection, which measures equity via

the spread of polling locations among RRA routes. This difference is particularly evident when

comparing routes from each solution method in the lower portion of region 1.

The time-based equity model and solution procedure also improves upon a manually-obtained

routing solution. For example, in region 1, a “by-hand” solution procedure resulted in a total travel

and service time of 2217.94 minutes and a difference between the largest and smallest route times

of 43.27 minutes. Setting γ equal to 43.27, the compressed annealing algorithm identifies a routing

solution with total travel and service time of 2183.50 minutes, a 1.56 percent decrease. Excluding
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the total service time, a constant for all solutions, the manually-obtained solution increases by 8.64

percent the travel time of the optimization-based routes.

The primary managerial takeaway of this discussion is how one might manage the tradeoff

between cost and equity. Having selected a suitable definition of equity (location- or time-based)

and given a target level of inequity tolerance, Figure 2 or Figure 3 can be used to inform the

decision maker as to how overall efficiency might improve or decrease if the tolerance for inequity

is adjusted. Although the discussion in this section focuses on region 1, a similar analysis could

be performed for other geographic areas in future elections. While one can generally expect cost

to decrease as inequity tolerance increases, the change in cost may depend on specific attributes of

the region in question, such as the geographic spread of polling locations and the number of RRAs.

5 Conclusion and Future Research Directions

We introduce the problem of routing rapid response attorneys (RRAs) among multiple polling

locations to provide real-time assistance and information to poll observers on election days. We

consider two optimization models to equitably and efficiently route RRAs, one model that treats

equity in terms of the assignment distribution of polling locations and another that measures equity

via differences in travel and service time. We develop heuristic solution procedures based on

simulated and compressed annealing. During the 2012 United States presidential election, an

implementation of our methods in one state significantly accelerated the task of routing RRAs and

more efficiently allocated the time of volunteer attorneys. We also explore the tradeoffs associated

with our treatments of routing equity.

We suggest several avenues for future research. First, operational efficiency may be increased

by explicitly accounting for potential detours from the planned RRA route. As described in §1,

RRAs may break from the visit sequence to provide assistance at a polling location. Developing

routes that are robust to such detours may increase operational efficiency. The notion of anticipa-

tory route selection in vehicle routing (Thomas and White, 2004) may provide a starting point.

Second, rather than direct attorneys to rove among polling locations as required by the cam-
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paign operations team, it may be more beneficial to station attorneys at fixed locations (e.g., the

geographic centers of their assigned routes) that provide quick response times to the assigned

polling locations. A drawback of this approach is a potential decrease in interaction among RRAs

and poll observers, who may benefit from RRAs’ suggestions throughout the election day. Treating

the problem in this fashion may benefit from work on ambulance location (Henderson and Mason,

2005).

Third, it may be possible to augment our models to capture uncertainty in RRA service times

across polling places and variation in travel times over an election day. Although the addition

of stochastic service and travel times is likely to complicate the optimization model and solution

procedure, accounting for such variability may provide a more realistic model. A deterministic

alternative to modeling travel times as random variables is to set different travel durations as a

function of time of day. The work of Figliozzi (2012) may serve as a baseline for incorporation of

time-dependent travel times.
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