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Abstract

We examine neighborhood structures for heuristic search applicable to a general class of ve-

hicle routing problems (VRPs). Our methodology utilizes a cyclic-order solution encoding,

which maps a permutation of the customer set to a collection of many possible VRP solutions.

We identify the best VRP solution in this collection via a polynomial-time algorithm from the

literature. We design neighborhoods to search the space of cyclic orders. Utilizing a simulated

annealing framework, we demonstrate the potential of cyclic-order neighborhoods to facilitate

the discovery of high quality a priori solutions for the vehicle routing problem with stochastic

demand (VRPSD). Without tailoring our solution procedure to this specific routing problem,

we are able to match 16 of 19 known optimal VRPSD solutions. We also propose an updating

procedure to evaluate the neighbors of a current solution and demonstrate its ability to reduce

the computational expense of our approach.

Keywords: heuristics, logistics, cyclic-order neighborhoods, stochastic vehicle routing, simulated

annealing

1 Introduction

We examine neighborhood structures for heuristic search applicable to a general class of vehicle

routing problems (VRPs). The class of problems includes VRPs in which a homogenous fleet of

vehicles serves a set of customers such that: (i) each customer is assigned to exactly one vehicle

route; (ii) the objective is to find a feasible set of routes x⋆ such that f(x⋆) ≤ f(x) for all feasible

route sets x, where f is a cost function separable in the routes composing x; and (iii) any constraints

pertain to restrictions on individual routes rather than collections of routes. Within this class, we

focus on obtaining a priori solutions to the VRP with stochastic demand (VRPSD), an important

and challenging problem in the field of logistics (see Campbell and Thomas 2008 for a review of

recent advances in a priori routing).
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The neighborhood structures we develop utilize the cyclic-order solution encoding of Ryan

et al. (1993). A cyclic order is a permutation, or ordering, of the set of customers. Orders are called

cyclic because our algorithmic framework treats them as circular, e.g., when advancing through a

cyclic order, iterating beyond the last customer in the order advances to the first customer. As Ryan

et al. (1993) show, by iteratively sweeping across the permutation of customers to generate a set

of candidate routes, a cyclic-order encoding corresponds to a very large number of classical VRP

solutions from which the best solution can be identified via a polynomial-time algorithm. Further,

Ryan et al. (1993) show that there exists a family of cyclic orders that corresponds to an optimal

solution for the classical VRP. Our work is motivated by these results, recognizing that effective

means to obtain a cyclic order within this family has not been explored in the literature. Further,

our work recognizes that cyclic orders apply to a broader class of VRPs.

We make two contributions. First, we design local search neighborhoods for the cyclic-order

representation of a general class of VRPs, leveraging Ryan et al. (1993) to map cyclic orders to

VRP solutions. Utilizing a simulated annealing framework, we demonstrate the potential of cyclic-

order neighborhoods to facilitate the discovery of high quality a priori VRPSD solutions, matching

16 of 19 known optimal solutions. As our search procedure is designed for the general class of

VRPs described above, and not tailored to the VRPSD, we find these results to be promising.

Second, for each neighborhood, we propose an updating procedure to evaluate the neighbors of a

current solution. Our experiments with VRPSD instances show substantial computational savings

result from employing the updating procedure. To the best of the authors’ knowledge, this is the

first work to examine local search for VRPs using the cyclic-order representation.

Throughout the paper, we provide illustrative examples of our methodology applied to the

classical VRP. We utilize the classical VRP for simplicity and to emphasize the general nature of

our methodology. To transfer the logic in our examples to the VRPSD or to any other problem

within the stated class, two adjustments may be required. First, the function f(·) must reflect the

cost of a routing plan for the chosen VRP. In §7.1, we demonstrate how to calculate the expected

cost of an a priori VRPSD route. For some stochastic VRPs, where the expected cost of a routing

plan may be difficult to calculate, f(·) may be estimated via Monte Carlo simulation. Second,

constraints specific to the chosen VRP might have to be incorporated when generating candidate

routes. In the VRPSD formulation we adopt, the constraints for a priori routes mirror those of the

classical VRP, therefore our examples transfer directly.

In §2, we review literature related to the VRPSD. In §3, we formally state the VRPSD. In §4,

we provide a detailed explanation of the cyclic-order solution representation. We define neigh-

borhoods to search cyclic orders in §5. In §6, we describe methods to update the set of candidate

routes in local search schemes. In §7, we show how cyclic-order neighborhoods can be embedded
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in a simulated annealing procedure to solve the VRPSD. We summarize the paper and suggest

directions for future research in §8.

2 Related Literature

Compared to the classical VRP, the VRPSD has received relatively little attention in the literature

despite its applicability to many distribution systems, e.g., vendor-managed inventory networks.

Much of the VRPSD literature focuses on a priori, or fixed route solutions. The a priori approach,

suggested initially by Tillman (1969) and formalized by Dror et al. (1989) and Bertsimas (1992),

requires a vehicle to visit a predetermined sequence of customers, returning to the depot as nec-

essary to replenish capacity. Compared to more dynamic routing schemes, a priori solutions are

easier to compute and offer the managerial benefit of regular associations between customers and

operators.

The a priori VRPSD formulation we adopt is that of Laporte et al. (2002) and Christiansen

and Lysgaard (2007). Their formulation requires a set of a priori vehicle routes with minimum

expected cost, beginning and ending at the depot, such that each customer is assigned to exactly one

route and the expected demand assigned to each route does not exceed vehicle capacity. Vehicles

are required to continue on their assigned routes until capacity is depleted (i.e., a route failure

occurs), in which case capacity is replenished at the depot and service continues at the location

of the route failure (this is in contrast to the more dynamic policy of Yang et al. (2000), which

allows preemptive capacity replenishment). Under the assumption that customer demands are

independent, calculation of the expected cost of an a priori routing plan is separable in the routes

(Teodorović and Pavković 1992). Thus, the formulation we adopt for the VRPSD belongs to the

class of problems described in §1.

Exact algorithms for obtaining a priori VRPSD solutions include the methods of Gendreau

et al. (1995), Hjorring and Holt (1999), Laporte et al. (2002), and Christiansen and Lysgaard

(2007). The integer L-shaped algorithm of Laporte et al. (2002) has been successful in solving

to optimality problem instances with up to 100 customers and two vehicles. The branch-and-

price procedure of Christiansen and Lysgaard (2007) has solved to optimality problem instances

with many more vehicles, but fewer customers. Recent heuristic procedures for obtaining a priori

VRPSD solutions include the methods of Gendreau et al. (1996), Yang et al. (2000), Chepuri and

Homem-de Mello (2005), Novoa et al. (2006), Ak and Erera (2007), and Rei et al. (2010). Some

of these methods focus on single-vehicle problems, while others consider the multiple vehicle case

and report solutions for problem instances including up to 100 customers and several vehicles. Due
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to a lack of standard benchmark problems for the VRPSD, however, it is difficult to compare the

effectiveness of different heuristic methods.

A limited amount of research has focused on more dynamic routing schemes for the VRPSD.

Unlike the a priori approach, where a routing plan is devised ahead of time and a simple re-

course action handles route failures, routing decisions in dynamic schemes are dependent on the

realizations of customer demand. Dror et al. (1989) formulate a fully dynamic, single-vehicle

VRPSD as a Markov decision process. Notable efforts to solve this formulation include Seco-

mandi (2000, 2001, 2003), which focus on obtaining rollout policies through iterative application

of the restocking-based cyclic heuristic of Bertsimas et al. (1995). Secomandi and Margot (2009)

obtain high quality solutions for the single-vehicle VRPSD by applying exact solution methods to

a restricted state space.

With regards to the use of cyclic orders, Renaud et al. (1996) and Renaud and Boctor (2002)

employ a similar idea as part of construction heuristics for VRPs. Their methods construct a

number of potential vehicle routes and then identify the best possible VRP solution that can be

assembled from the routes via the polynomial-time procedure of Boctor and Renaud (2000), which

is identical to the polynomial-time procedure of Ryan et al. (1993). There are two main differences

between these construction heuristics and our local search procedures. First, when generating

candidate routes corresponding to a cyclic order, we directly implement Ryan et al. (1993), which

generates routes via the sweep procedure of Gillett and Miller (1974). In Renaud et al. (1996) and

Renaud and Boctor (2002), a larger set of routes is generated via a more involved sweep procedure.

Second, we iteratively generate candidate routes and extract VRP solutions, whereas Renaud et al.

(1996) and Renaud and Boctor (2002) execute their procedures only once. Although the one-time

candidate route sets of Renaud et al. (1996) and Renaud and Boctor (2002) are larger than the

candidate route sets we generate for a single cyclic order, our iterative generation of cyclic orders

(and the corresponding candidate route sets) leads to consideration of a very diverse set of routes

for inclusion in VRP solutions. To the best of the authors’ knowledge, this is the first work to

examine local search for VRPs using the cyclic-order representation.

Finally, we note that cyclic methods form the basis of other search procedures for VRPs. While

these methods contain algorithmic features that can be described as cyclic, the only connection to

our work is a similarity in name – they are fundamentally different from the cyclic orders of Ryan

et al. (1993), which we employ in this paper. Bertsimas (1992) and Bertsimas et al. (1995) propose

cyclic heuristics for the single-vehicle VRPSD. Given a sequence of n customers, the heuristic

seeks to identify a sequence with lower expected cost by generating n alternative sequences, each

one constructed by beginning the sequence at one of the n customers in the initial sequence (hence

the heuristic cycles through the initial sequence). Thompson and Psaraftis (1993) apply cyclic
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transfers to several vehicle routing and scheduling problems. Based on the work of Thompson

and Orlin (1989), cyclic transfer algorithms seek to improve the total cost of a set of routes by

transferring small numbers of demands among routes, in a cyclical manner.

3 Problem Statement

The classical VRP is defined by the completely connected digraph G = (V,E), where V =

{0, 1, . . . , n} is a set of n+ 1 nodes and E = {(i, j) : i, j ∈ V } is a set of directed edges. Node 0

is a depot at which m identical vehicles each of capacity D are based, while the remaining nodes

are customers. A deterministic symmetric travel cost matrix C = (ci,j) is defined on E. With each

customer is associated a nonnegative deterministic demand to be collected or delivered, but not

both. The objective of the classical VRP is to obtain a set of vehicle routes, each route beginning

and ending at the depot, with minimum travel cost such that each customer is visited exactly once

by exactly one vehicle and the total demand served by a vehicle route does not exceed vehicle

capacity.

The VRPSD is an extension of the classical VRP that defines customer demands as nonnega-

tive random variables ξi, i ∈ {1, 2, . . . , n}. The probability distribution of customer demands is

known ahead of time, but actual demands are not realized until initial arrival at customer locations.

Consequently, vehicle capacity may not be sufficient to fully serve customer demand on an initial

visit. When such route failures occur, vehicle capacity is replenished at the depot before the vehicle

can continue serving customer demand.

4 Cyclic-Order Solution Representation

In this section, we describe a cyclic-order solution encoding for VRPs identical to that of Ryan

et al. (1993), the only difference being that we have changed the notation to accommodate the

algorithmic framework developed in subsequent sections. We begin in §4.1 by describing our

notation. For a given cyclic order, identifying the corresponding VRP solution is accomplished in

two steps: generation of a set of candidate routes and extraction of the best VRP solution that can

be assembled from the candidate routes. We address these topics in §4.2 and §4.3, respectively.

4.1 Cyclic-Order Notation

We denote a cyclic order, or permutation of the customer set, by π. For some index i ∈ {1, 2, . . . , n},
we denote by π(i) the customer at the ith position of π. We define three functions to work with
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indices, each of which accounts for the cyclic, or circular, nature of π. For any i, j ∈ {1, 2, . . . , n},

forw(i, j) =

i+ j, i+ j ≤ n

i+ j − n, otherwise,
(1)

back(i, j) =

i− j, i− j ≥ 1

n− j + i, otherwise,
(2)

and

dist(i, j) =

j − i, i ≤ j

n− i+ j, otherwise.
(3)

A call to forw(i, j) in (1) returns the index obtained by advancing index i “forward” j posi-

tions. If i+ j ≤ n, then this index is obtained by summing i and j. If i+ j > n, then the index is

obtained by advancing forward to the end of the cyclic order and then advancing forward from the

beginning of the cyclic order, resulting in index i+ j − n.

Similarly, a call to back(i, j) in (2) returns the index obtained by moving index i “backward”

j positions. If i− j ≥ 1, then this index is obtained by subtracting j from i. If i− j < 1, then the

index is obtained by advancing backward to the beginning of the cyclic order and then advancing

backward from the end of the cyclic order, resulting in index n− j + i.

A call to dist(i, j) in (3) calculates the number of times index i must be advanced forward

such that it equals index j. If i precedes j in the cyclic order, then this number is j less i. If j

precedes i, then this number is obtained by counting the number of forward advances required to

reach the end of the cyclic order and then to reach position j from the beginning of the cyclic order,

resulting in n− i+ j forward advances.

To illustrate these functions, consider n = 5 and π = (5, 3, 4, 2, 1). A call to forw(4, 3) re-

turns index 2, which is obtained by advancing index 4 forward one time, wrapping around to the

beginning of the cyclic order, and then advancing forward two more times. Thus, π(forw(4, 3)) =

π(2) = 3. A call to back(1, 2) returns index 4, which is obtained by first wrapping around to the

end of the cyclic order, and then advancing backward two times. Thus, π(back(1, 2)) = π(4) = 2.

A call to dist(4, 2) returns 3, which is the number of forward advances required to go from

π(4) = 2 to π(2) = 3. We also use equations (1) and (3) in combination to specify a contigu-

ous subset of customers in π. For example, the subset of customers corresponding to positions i

through j of π is denoted {π(i), π(forw(i, 1)), π(forw(i, 2)), . . . , π(forw(i,dist(i, j)))}. In

our example, if i = 4 and j = 2, then the subset is {π(4) = 2, π(5) = 1, π(1) = 5, π(2) = 3},
where the last element, π(2), is dist(4, 2) = 3 positions forward of π(4).

6



4.2 Generation of Candidate Routes

We denote by R(π) the feasible set of candidate routes consisting of contiguous elements of π.

A route r = {π(i), π(forw(i, 1)), π(forw(i, 2)), . . . , π(forw(i,dist(i, j)))} visits the subset

of customers corresponding to positions i through j of π. We uniquely identify each route r ∈
R(π) by the first and last customers of the subset of customers it visits: ⟨first(r),last(r)⟩ =
⟨π(i), π(j)⟩. As an example, if π = {5, 3, 4, 2, 1}, i = 4, and j = 1, then r = ⟨π(4), π(1)⟩ is a

route that visits the subset of customers {π(4) = 2, π(5) = 1, π(1) = 5}.
To generate R(π), we use a sweep procedure similar to that of Gillett and Miller (1974). Al-

gorithm 1 describes our sweep procedure, which we employ throughout the paper. The Sweep(·)
function in Algorithm 1 takes as input a cyclic order π, a route set S , and indices i, j ∈ {1, . . . , n}.
A route set is a set of already defined routes, a set which may be empty. An arbitrary call to

Sweep(π,S, i, j) begins on line 2 by initializing a generic index p to index j. At each iter-

ation of the loop beginning on line 3, a route r is created that visits the subset of customers

{π(i), π(forw(i, 1)), π(forw(i, 2)), . . . , π(forw(i,dist(i, p)))}. As before, we denote such

a route as ⟨π(i), π(p)⟩. If r is feasible, we insert it into S, advance index p forward by one posi-

tion, and repeat. Otherwise, we break from the loop, the procedure terminates, and the updated S
is returned. In the case that all created routes are feasible and the loop is never broken, the loop

eventually terminates after creating route ⟨π(i), π(back(i, 1))⟩, which visits all of the customers.

In this case p is equal to back(i, 1), thus advancing p forward one position meets the termination

criteria of p = i, which is checked at the end of each loop iteration.

Algorithm 1 Sweep Procedure for Customer π(i) Beginning at Customer π(j)
1: procedure SWEEP(π,S, i, j)
2: p← j

3: repeat
4: r ← ⟨π(i), π(p)⟩
5: if r is feasible then
6: S ← S ∪ r

7: else
8: break
9: p← forw(p, 1)

10: until p = i

11: return S

To explain the use of Algorithm 1 to construct R(π), let R(π(i)) denote the set of routes

consisting of contiguous elements of π such that first(r) = π(i). We generate R(π) =
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Customer x-coord y-coord Demand
0 8.0 -6.0 0

1 10.0 -5.0 3

2 11.0 -2.0 3

3 4.0 -2.0 2

4 6.0 -4.5 3

5 3.0 -4.0 6

6 6.5 -5.5 4

7 3.0 -6.5 1

8 7.5 -10.5 4

9 8.4 -8.0 4

10 9.5 -10.0 4

11 14.0 -6.5 3

12 10.4 -5.5 5

13 14.5 -4.0 2

Table 1: Example Problem Data

∪n
i=1R(π(i)) by iteratively calling Sweep(π, ∅, i, i) for i = 1, . . . , n and storing the respective

output in R(π(i)). For example, consider the cyclic order π = (7, 8, 9, 10, 11, 12, 13, 1, 2, 3,

4, 5, 6) for the 13-customer classical VRP instance given in Ryan et al. (1993). Table 1 displays

customer locations and demands for this problem. Vehicle capacity is 10 and distances are Eu-

clidean. We construct R(π(1)) by executing Sweep(π, ∅, 1, 1) which first creates the singleton

route ⟨π(1), π(1)⟩ = ⟨7, 7⟩, followed by routes ⟨π(1), π(2)⟩ = ⟨7, 8⟩ and ⟨π(1), π(3)⟩ = ⟨7, 9⟩.
In this example, ⟨π(1), π(4)⟩ = ⟨7, 10⟩ is infeasible with respect to vehicle capacity, so the pro-

cedure terminates and returns {⟨7, 7⟩, ⟨7, 8⟩, ⟨7, 9⟩} which we store in R(π(1)). Repeating the

call to Sweep(π, ∅, i, i) for each remaining position i results in the complete construction of

R(π) = ∪13
i=1R(π(i)) as the left half of Table 2 illustrates (the right half of Table 2 will be used in

a subsequent illustration). We note that the VRPSD version of this 13-customer instance in which

each demand figure is assumed to be the average demand of the stochastic customer demand results

in the same set R(π) since routes are constructed so that expected demand assigned to each route

does not exceed vehicle capacity.

Provided that a singleton route to each customer is feasible,R(π) will always contain a subset

of routes that corresponds to a feasible VRP solution (otherwise, the problem instance is infea-

sible). In general, the total number of feasible VRP solutions that can be assembled from R(π)
cannot be determined a priori. However, for a solution with m vehicles, an upper bound on the

number of feasible VRP solutions is O
((|R(π)|

m

))
.
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i π(i) R(π(i)) π′(i) R(π′(i))

1 7 ⟨7, 7⟩ ⟨7, 8⟩‡ ⟨7, 9⟩‡ 8 ⟨8, 8⟩ ⟨8, 9⟩
2 8 ⟨8, 8⟩ ⟨8, 9⟩ 9 ⟨9, 9⟩ ⟨9, 10⟩
3 9 ⟨9, 9⟩ ⟨9, 10⟩ 10 ⟨10, 10⟩ ⟨10, 1⟩∗ ⟨10, 2⟩∗

4 10 ⟨10, 10⟩ ⟨10, 11⟩‡ 1 ⟨1, 1⟩ ⟨1, 2⟩ ⟨1, 3⟩
5 11 ⟨11, 11⟩ ⟨11, 12⟩ ⟨11, 13⟩ 2 ⟨2, 2⟩ ⟨2, 3⟩ ⟨2, 4⟩
6 12 ⟨12, 12⟩ ⟨12, 13⟩ ⟨12, 1⟩‡ 3 ⟨3, 3⟩ ⟨3, 4⟩
7 13 ⟨13, 13⟩ ⟨13, 1⟩‡ ⟨13, 2⟩‡ ⟨13, 3⟩‡ 4 ⟨4, 4⟩ ⟨4, 5⟩
8 1 ⟨1, 1⟩ ⟨1, 2⟩ ⟨1, 3⟩ 5 ⟨5, 5⟩ ⟨5, 6⟩
9 2 ⟨2, 2⟩ ⟨2, 3⟩ ⟨2, 4⟩ 6 ⟨6, 6⟩ ⟨6, 7⟩ ⟨6, 11⟩∗

10 3 ⟨3, 3⟩ ⟨3, 4⟩ 7 ⟨7, 7⟩ ⟨7, 11⟩∗ ⟨7, 12⟩∗

11 4 ⟨4, 4⟩ ⟨4, 5⟩ 11 ⟨11, 11⟩ ⟨11, 12⟩ ⟨11, 13⟩
12 5 ⟨5, 5⟩ ⟨5, 6⟩ 12 ⟨12, 12⟩ ⟨12, 13⟩
13 6 ⟨6, 6⟩ ⟨6, 7⟩ ⟨6, 8⟩‡ 13 ⟨13, 13⟩ ⟨13, 8⟩∗ ⟨13, 9⟩∗

Table 2: Example of updatingR(π) to obtainR(π′) for a 3-shift neighbor with i = 2 and j = 8

4.3 Solution Extraction

After generating the set of candidate routes, optimization is applied to identify the best VRP so-

lution that can be assembled from the routes in R(π). Denote by xπ a feasible VRP solution that

can be assembled from R(π). Ryan et al. (1993) solve a set partitioning problem (SPP) to find

the feasible solution x⋆
π such that f(x⋆

π) ≤ f(xπ) for every feasible solution xπ ⊆ R(π). The

SPP consists of columns corresponding to each route in R(π) and rows representing each of the

n customers. The cost of each column is the cost of the corresponding route (which can include a

large fixed cost to reflect the cost of using a vehicle).

Ryan et al. (1993) show that the special structure of the routes produced by the sweep proce-

dure allows such SPPs to be solved in polynomial time by finding the shortest compact cycle in

a digraph. The digraph consists of n nodes, one for each customer, and one arc for each route in

R(π). Ryan et al. (1993) demonstrate that the problem of finding the shortest compact cycle is

equivalent to solving one shortest path problem for each of the n customers, hence the polynomial-

time guarantee. The graph for the shortest path problem corresponding to a customer i is obtained

by removing from the digraph all arcs that skip the node representing customer i. The least-cost

path among all n shortest path problems represents the best VRP solution that can be assembled

from R(π). Applying this two-phase procedure of route generation and optimization to the cyclic

order example given in §4.2 results in the route set displayed in Figure 1, which consists of routes

{⟨12, 1⟩, ⟨2, 4⟩, ⟨5, 6⟩, ⟨7, 9⟩, ⟨10, 11⟩}. For a more detailed description of the optimization proce-

dure, the reader is referred to Ryan et al. (1993) or to Boctor and Renaud (2000), which provides
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Figure 1: Best VRP solution corresponding to π = (7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6). We note

that this solution corrects a minor oversight in Ryan et al. (1993).

an equivalent result.

5 Cyclic-Order Neighborhoods

While Ryan et al. (1993) establish that there exists at least one cyclic order π⋆ for which R(π⋆)

contains the routes composing an optimal VRP solution, effective means to obtain π⋆ have not

been explored in the literature. We propose a collection of permutation-based neighborhoods to

facilitate local search on the space of cyclic orders:

• k-shift. For a given cyclic order π and a positive integer k < n − 1, select indices i, j ∈
{1, . . . , n} and shift the k contiguous elements π(i), π(forw(i, 1)), π(forw(i, 2)), . . . ,

π(forw(i, k − 1)), as a group, to the positions immediately prior to π(j). A k-shift neigh-

borhood of π consists of the cyclic orders that can be constructed from the set of indices

{i, j : dist(i, j) > k}.

• Reverse. For a given cyclic order π, select indices i, j ∈ {1, . . . , n} and reverse the order of

π(i), π(forw(i, 1)), π(forw(i, 2)), . . . π(forw(i,dist(i, j))), which are the contiguous

elements of π beginning at π(i) and advancing forward to π(j). A reverse neighborhood of

π consists of the cyclic orders that can be constructed from all i, j pairs of indices. If i = j,

then the entire cyclic order is reversed.

• Exchange. For a given cyclic order π, select indices i, j ∈ {1, . . . , n} and exchange the
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Figure 2: Best VRP solution corresponding to π′ = (7, 8, 9, 10, 12, 11, 13, 1, 2, 3, 4, 5, 6).

positions of π(i) and π(j). An exchange neighborhood of π consists of the cyclic orders that

can be constructed from the set of indices {i, j : i < j}.

With respect to the number of cyclic orders, the size of each of the above neighborhoods is

O(n2). Because a cyclic order corresponds to a potentially large number of VRP solutions, how-

ever, one potential advantage of operating on cyclic orders rather than directly on VRP solutions is

that a small change in the cyclic order may result in significant change in the structure of the best

VRP solution that can be assembled from the candidate routes. To illustrate the diversity of solu-

tions that a cyclic-order neighborhood can generate, we compare Figures 1 and 2, which display

the best classical VRP solutions corresponding to π = (7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6) and

π′ = (7, 8, 9, 10, 12, 11, 13, 1, 2, 3, 4, 5, 6), respectively, for the 13-customer problem from Ryan

et al. (1993). We obtain π′ from π by applying the exchange operation with i = 5 and j = 6.

Comparing the route structures in Figure 1 to those in Figure 2 reveals that even small changes

to the cyclic order (i.e., exchanging two consecutive elements) can result in very different solu-

tions. Furthermore, obtaining the route structure of Figure 2 from Figure 1 requires 10 customer

insertions/removals if applying local search directly on the VRP solution rather than the cyclic

order.

6 Updating Procedure for Neighboring Cyclic Orders

In §6.1, we motivate the need for an updating procedure. In §6.2, we identify the structural property

of our algorithmic framework that enables our updating procedure. In §6.3, we provide a detailed
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example of how to apply our updating procedure.

6.1 Motivation

As discussed in §4, the evaluation of a cyclic order π is a two-step process. First, we generate the

corresponding set of candidate routes R(π). Second, we identify x⋆
π, the optimal VRP solution

with respect toR(π), where the optimization is achieved in polynomial time by solving a series of

shortest path problems (Ryan et al. 1993; Boctor and Renaud 2000). In a local search procedure,

a naive approach to evaluate π′, a neighbor of π, would be to construct R(π′) in its entirety by

iteratively calling Sweep(π′, ∅, i, i) for i = 1, . . . , n. However, many of the candidate routes in

R(π′) may also be inR(π), therefore recreating these routes is redundant. In this section, we show

how to obtain R(π′) by updating R(π). We demonstrate in §7.4 that this updating procedure can

significantly reduce computation time.

To motivate our updating procedures, we again consider the example presented in Table 2. As

before, the left-hand portion of the table displays a cyclic order π and the corresponding set of

candidate routes for the 13-customer classical VRP instance of Ryan et al. (1993). The fourth

column of Table 2 displays a cyclic order π′ generated by applying the 3-shift operator on π with

i = 2 and j = 8. The fifth column contains the corresponding set of candidate routes, R(π′). To

obtain R(π′) by updating R(π), we must remove from R(π) the eight routes superscripted by ‡
and add the seven routes superscripted by ∗, with all the other routes remaining unchanged. In

comparison, totally reconstructing R(π′) requires the creation of 33 routes, 26 of which already

exist inR(π).

6.2 Structural Result

By considering the construction ofR(π) (see §4), it is possible to systematically identify routes to

retain, remove, and add to obtain R(π′). Recall from §4 that each route in R(π) visits a subset of

customers consisting of contiguous elements of the cyclic order π. Thus, segments of π and π′ that

are identical generate the same subset of routes. These routes exist both in R(π) and R(π′). To

illustrate the process of removing and adding routes to obtain R(π′) by updating R(π), consider

route subset R(π(1)) = {⟨7, 7⟩, ⟨7, 8⟩, ⟨7, 9⟩} in the left-hand portion of Table 2. Recall that the

sweep procedure creates these routes because customers 7, 8, and 9 are positioned contiguously in

π and can feasibly exist on the same route. In π′, however, this is not the case. Customers 8 and 9

are adjacent, but customer 7 precedes customer 11. Thus,R(π′) does not contain routes ⟨7, 8⟩ and

⟨7, 9⟩ and the updating procedure must remove them. To generate the new routes beginning with
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customer 7 (due to its new position 10), we execute Sweep(π′,R(π′(10)), 10, 11) via Algorithm 1

to obtain the routes ⟨7, 11⟩ and ⟨7, 12⟩. The result isR(π′(10)) = {⟨7, 7⟩, ⟨7, 11⟩, ⟨7, 12⟩}.
In the above example, to identify routes inR(π(1)) that do not exist inR(π′), it is sufficient to

determine which routes visit customers 7 and 8. Because customer 7 no longer precedes customer

8 in π′, we remove all routes in R(π(1)) visiting these two customers to update R(π′). It is

possible that other route subsets R(π(i)), i = 2, . . . , n, also contain routes visiting customers

7 and 8 (e.g., route ⟨6, 8⟩ in R(π(13))); to identify such sets, it is sufficient to examine their

cardinality. Denote by pos(z) the position of customer z in π. If a route subset R(π(i)) contains

any routes visiting customers 7 and 8, then |R(π(i))| > dist(i,pos(8)), where pos(8) = 2.

Because |R(π(13))| = 3 > dist(13, 2) = 2, we know that R(π(13)) contains 3 − 2 = 1

route that visits customers 7 and 8 (route ⟨6, 8⟩). Because |R(π(12))| = 2 ≤ dist(12, 2) = 3,

R(π(12)) does not contain any routes visiting customers 7 and 8. Moreover, elements in the

set {R(π(p)) : p ∈ (12, 11, . . . , 2)} do not contain any routes visiting customers 7 and 8. These

relationships are stated formally in Proposition 1, where we define Λ
(
π(i), π(j)

)
= {r ∈ R(π(i)) :

dist(i,pos(last(r))) ≥ dist(i, j)} to be the routes in R(π(i)) that visit customers π(i) and

π(j).

Proposition 1. For all i, j ∈ {1, . . . , n}, if |R(π(i))| > dist(i, j), then |Λ
(
π(i), π(j)

)
| =

|R(π(i))| − dist(i, j). Otherwise, {R(π(p)) : p ∈ (i,back(i, 1),back(i, 2), . . . ,back(i,

dist(j, i)− 1))} do not contain any routes that visit customers π(i) and π(j).

We note that the sweep procedure in Algorithm 1 creates the routes inR(π(i)) for i = 1, . . . , n,

in order of increasing pos(last(·)), meaning that the routes in a given subsetR(π(i)) are sorted

by the position in π of the last customer in the subset of customers visited by each route (we

present the route sets in Table 2 in this order), thus facilitating the identification of Λ
(
π(i), π(j)

)
.

To updateR(π′), we simply remove the last |R(π(i))|−dist(i, j) routes from the subsetR(π(i)),
an O(1) operation. Furthermore, upon the insertion of new routes to update R(π′), maintaining

this ordering requires no additional sorting as we create the new routes for insertion via the sweep

procedure in Algorithm 1.

For a cyclic order π and a neighbor cyclic order π′ generated from one of the neighborhoods in

§5, we employ Proposition 1 to obtainR(π′) by updatingR(π). Algorithm 2 details this procedure

for the k-shift neighborhood. Algorithms 3 and 4 detail this procedure for the reverse and exchange

neighborhoods, respectively.
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Algorithm 2 UpdateR(π) to ObtainR(π′) for a k-shift Neighbor
1: Input: cyclic order π, candidate route setR(π), indices i and j, positive integer k < n− 1

2: Output: neighbor cyclic order π′, candidate route setR(π′)

3: πA ←
(
π
(
i
)
, π

(
forw(i, 1)

)
, . . . , π

(
forw(i, k − 1)

))
4: πB ←

(
π
(
j
)
, π

(
forw(j, 1)

)
, . . . , π

(
forw(j,dist(j,back(i, 1)))

))
5: πC ←

(
π
(
forw(i, k)

)
, π

(
forw(i, k + 1)

)
, . . . , π

(
forw(i, k + dist(forw(i, k),back(j, 1)))

))
6: π′ ← πA ⊕ πB ⊕ πC

7: R(π′)←R(π)
8: p← k

9: repeat
10: if |R(π′(p))| > dist(p,forw(k, 1)) then
11: R(π′(p))← R(π′(p)) \ Λ

(
π′(p), π′(forw(k, 1))

)
12: R(π′(p))← Sweep(π′,R(π′(p)), p,forw(k, 1))

13: else if |R(π′(p))| = dist(p,forw(k, 1)) then
14: R(π′(p))← Sweep(π′,R(π′(p)), p,forw(k, 1))

15: else
16: break

17: p← back(p, 1)

18: until p = n

19: p← forw(k,dist(j, i))

20: repeat
21: if |R(π′(p))| > dist(p,forw(k,dist(j, i) + 1)) then
22: R(π′(p))← R(π′(p)) \ Λ

(
π′(p), π′(forw(k,dist(j, i) + 1))

)
23: R(π′(p))← Sweep(π′,R(π′(p)), p,forw(k,dist(j, i) + 1))

24: else if |R(π′(p))| = dist(p,forw(k,dist(j, i) + 1)) then
25: R(π′(p))← Sweep(π′,R(π′(p)), p,forw(k,dist(j, i) + 1))

26: else
27: break

28: p← back(p, 1)

29: until p = k

30: p← n

31: repeat
32: if |R(π′(p))| > dist(p, 1) then
33: R(π′(p))← R(π′(p)) \ Λ

(
π′(p), π′(1)

)
34: R(π′(p))← Sweep(π′,R(π′(p)), p, 1)

35: else if |R(π′(p))| = dist(p, 1) then
36: R(π′(p))← Sweep(π′,R(π′(p)), p, 1)

37: else
38: break

39: p← back(p, 1)

40: until p = forw(k,dist(j, i))
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6.3 Example

We illustrate Algorithm 2 by stepping through the example in Table 2, where π′ is in the k-shift

neighborhood of π with k = 3, i = 2, and j = 8. Lines 3-6 of Algorithm 2 construct neighbor

π′ by partitioning π into three sequences (πA, πB, and πC), which are then concatenated (where

⊕ is the concatenation operator) in line 6 to form π′. The sequence πA = (8, 9, 10) in line 3

corresponds to the k = 3 elements of π to be shifted. The sequence πB = (1, 2, 3, 4, 5, 6, 7) in line

4 corresponds to the string of elements in π between position j = 8 (where πA is to be inserted)

forward through position back(i = 2, 1) = 1, the position immediately before πA currently

begins. Sequence πC = (11, 12, 13) in line 5 corresponds to the string of elements in π lying

between the elements to be shifted and their insertion position, i.e., position 5 forward through

position 7 of π. Concatenating the sequences in the order of πA⊕ πB ⊕ πC in line 6 results in π(i)

occupying position 1 in π′. We do this for algorithmic convenience and note that the concatenation

πB ⊕ πC ⊕ πA or πC ⊕ πA ⊕ πB results in an alternate assignment of position 1, but an equivalent

cyclic order with an identical set of candidate routes and subsequent VRP solution.

The remainder of Algorithm 2 utilizes the observation that the k-shift neighborhood generates

a neighbor solution by rearranging the sequences πA, πB, and πC . That is, π = πA ⊕ πC ⊕ πB

and π′ = πA ⊕ πB ⊕ πC . Therefore,R(π′) can be conveniently updated fromR(π) by leveraging

Proposition 1 while inspecting how the reordering of these sub-sequences affects the contiguous

elements.

To begin the updating process, line 7 initializes candidate route set R(π′) to R(π). The three

loops composing the remainder of Algorithm 2 update the route sets corresponding to sequences

πA, πB, and πC , respectively. Lines 8-18 treat sequence πA beginning at π′(k) and advancing

backward to π′(1). At each iteration of the loop beginning on line 9, routes visiting customers 10

and 11 are removed from route set R(π′(p)), then routes visiting customers 10 and 1 are added.

Line 10 employs Proposition 1 to identify routes for removal. In the first iteration of the loop,

when p = k = 3, R(π′(3)) is initially {⟨10, 10⟩, ⟨10, 11⟩}, and the condition |R(π′(3))| = 2 >

dist(3, 4) = 1 alerts us that one route needs to be removed and new routes may have to be

added. Line 11 removes route ⟨10, 11⟩ and line 12 adds routes ⟨10, 1⟩ and ⟨10, 2⟩ by executing

Sweep(π′,R(π′(3)), 3, 4) via Algorithm 1. In the next iteration, when p = 2,R(π′(2)) is initially

{⟨9, 9⟩, ⟨9, 10⟩}, and the condition |R(π′(2))| = 2 ≤ dist(2, 4) = 2 informs us that no routes

need to be removed. However, the equality in line 13 holds, so an attempt to add routes containing

customers 9 and 1 is made by executing Sweep(π′,R(π′(2)), 2, 4). No such routes are added to

R(π′(2)) because they are infeasible with respect to vehicle capacity. When p = 1, neither of the

conditions in lines 10 or 13 are met and the loop is terminated via the break statement on line 16.

15



If the criteria for breaking had not been satisfied, setting p to back(1, 1) = n on line 17 would

have met the loop termination criteria on line 18, which is checked at the end of each iteration.

In a similar fashion, lines 19-29 iterate backward through sequence πB. At each iteration of the

loop beginning on line 20, routes visiting customers 7 and 8 are removed from route setR(π′(p)),

then routes visiting customers 7 and 11 are added. Line 21 employs Proposition 1 to detect routes

to be removed. In the first iteration of the loop, when p = forw(3, 7) = 10,R(π′(10)) is initially

{⟨7, 7⟩, ⟨7, 8⟩, ⟨7, 9⟩}, and the condition |R(π′(10))| = 3 > dist(10, 11) = 1 indicates that two

routes need to be removed and new routes may have to be added. Line 22 removes routes ⟨7, 8⟩
and ⟨7, 9⟩ and line 23 adds routes ⟨7, 11⟩ and ⟨7, 12⟩ by performing Sweep(π′,R(π′(10)), 10, 11)

via Algorithm 1. In the next iteration, when p = 9, R(π′(9)) is initially {⟨6, 6⟩, ⟨6, 7⟩, ⟨6, 8⟩},
and the condition |R(π′(9))| = 3 > dist(9, 11) = 2 notifies us that one route needs to be

removed and new routes may have to be added. Line 22 removes route ⟨6, 8⟩ and line 23 adds

route ⟨6, 11⟩. In the next iteration, when p = 8, R(π′(8)) is initially {⟨5, 5⟩, ⟨5, 6⟩}, and the

condition |R(π′(8))| = 2 < dist(8, 11) = 3 tells us that no routes need to be removed or added.

Thus, the loop is terminated via the break statement on line 27.

Finally, lines 30-40 iterate backward through sequence πC . At each iteration of the loop be-

ginning on line 31, routes visiting customers 13 and 1 are removed from route set R(π′(p)),

then routes visiting customers 13 and 8 are added. Line 32 employs Proposition 1 to identify

routes to be eliminated. In the first iteration of the loop, when p = 13, R(π′(13)) is initially

{⟨13, 13⟩, ⟨13, 1⟩, ⟨13, 2⟩, ⟨13, 3⟩}, and the condition |R(π′(13))| = 4 > dist(13, 1) = 1 sig-

nals us that three routes need to be removed and new routes may have to be added. Line 33

removes routes ⟨13, 1⟩, ⟨13, 2⟩, and ⟨13, 3⟩ and line 34 adds routes ⟨13, 8⟩ and ⟨13, 9⟩ by execut-

ing Sweep(π′,R(π′(13)), 13, 1) via Algorithm 1. In the next iteration, when p = 12, R(π′(12))

is initially {⟨12, 12⟩, ⟨12, 13⟩, ⟨12, 1⟩}, and the condition |R(π′(12))| = 3 > dist(12, 1) = 2

advises us that one route needs to be removed and that new routes may have to be added. Line

33 removes route ⟨12, 1⟩, then line 34 attempts to add routes containing customers 12 and 8 by

performing Sweep(π′,R(π′(12)), 12, 1). No such routes are added toR(π′(12)) because they are

infeasible with respect to vehicle capacity. In the next iteration, when p = 11,R(π′(11)) is initially

{⟨11, 11⟩, ⟨11, 12⟩, ⟨11, 13⟩}, and the condition |R(π′(11))| = 3 ≤ dist(11, 1) = 3 indicates that

no routes need to be removed. However, the equality in line 35 holds, so an attempt to add routes

containing customers 11 and 8 is made by calling Sweep(π′,R(π′(11)), 11, 1). No such routes

are added to R(π′(11)) because they are infeasible with respect to vehicle capacity. In the next

iteration, p = 10, which meets the loop termination criteria.

Table 2 denotes the routes that we remove and insert during the procedure by superscripting

them with ‡ and ∗, respectively. We note that if neither of the conditions for removing and adding
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routes (lines 10 and 13, lines 21 and 24, lines 32 and 35, respectively) are met for an index p, then

we terminate the respective loop immediately as it is not necessary to check the conditions for the

remaining indices of the loop.

In the worst case, where we examine each route set and create n routes, the complexity of Al-

gorithm 2 is O(n2). While this is the same complexity as that of constructingR(π′) in its entirety,

we note that the worst-case complexity for this updating is only approached if routing constraints

(e.g., vehicle capacity) allow all customers to be serviced on one route. As our computational re-

sults in §7.4 demonstrate, the updating procedure provides significant computational advantages.

Algorithms 3 and 4 detail similar updating procedures for the reverse and exchange cyclic-order

neighborhoods. These procedures also have a worst case complexity of O(n2).

Algorithm 3 UpdateR(π) to ObtainR(π′) for a Reverse Neighbor
1: Input: cyclic order π, candidate route setR(π), indices i and j

2: Output: neighbor cyclic order π′, candidate route setR(π′)

3: π′ ← π

4: reverse the order of π′(i), π′(forw(i, 1)), π′(forw(i, 2)), . . . π′(forw(i,dist(i, j)))

5: R(π′)←R(π)
6: p← i

7: repeat
8: if |R(π′(p))| > dist(p,forw(p, 1)) then
9: R(π′(p))←R(π′(p)) \ Λ

(
π′(p), π′(forw(p, 1))

)
10: R(π′(p))← Sweep(π′,R(π′(p)), p,forw(p, 1))

11: else
12: R(π′(p))← Sweep(π′,R(π′(p)), p,forw(p, 1))

13: p← forw(p, 1)

14: until p = forw(j, 1)

15: p← back(i, 1)

16: repeat
17: if |R(π′(p))| > dist(p, i) then
18: R(π′(p))← R(π′(p)) \ Λ

(
π′(p), π′(i)

)
19: R(π′(p))← Sweep(π′,R(π′(p)), p, i)

20: else if |R(π′(p))| = dist(p, i) then
21: R(π′(p))← Sweep(π′,R(π′(p)), p, i)

22: else
23: break

24: p← back(p, 1)

25: until p = j
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Algorithm 4 UpdateR(π) to ObtainR(π′) for an Exchange Neighbor
1: Input: cyclic order π, candidate route setR(π), indices i and j

2: Output: neighbor cyclic order π′, candidate route setR(π′)

3: π′ ← π

4: exchange the positions of π′(i) and π′(j)

5: R(π′)←R(π)
6: for all p ∈ {i, j} do
7: if |R(π′(p))| > dist(p,forw(p, 1)) then
8: R(π′(p))←R(π′(p)) \ Λ

(
π′(p), π′(forw(p, 1))

)
9: R(π′(p))← Sweep(π′,R(π′(p)), p,forw(p, 1))

10: else
11: R(π′(p))← Sweep(π′,R(π′(p)), p,forw(p, 1))

12: p← back(i, 1)

13: repeat
14: if |R(π′(p))| > dist(p, i) then
15: R(π′(p))← R(π′(p)) \ Λ

(
π′(p), π′(i)

)
16: R(π′(p))← Sweep(π′,R(π′(p)), p, i)

17: else if |R(π′(p))| = dist(p, i) then
18: R(π′(p))← Sweep(π′,R(π′(p)), p, i)

19: else
20: break

21: p← back(p, 1)

22: until p = j

23: p← back(j, 1)

24: repeat
25: if |R(π′(p))| > dist(p, j) then
26: R(π′(p))← R(π′(p)) \ Λ

(
π′(p), π′(j)

)
27: R(π′(p))← Sweep(π′,R(π′(p)), p, j)

28: else if |R(π′(p))| = dist(p, j) then
29: R(π′(p))← Sweep(π′,R(π′(p)), p, j)

30: else
31: break

32: p← back(p, 1)

33: until p = i
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7 Application to the VRPSD

To demonstrate the effectiveness of our methodology, we embed cyclic-order neighborhoods in a

simulated annealing procedure to solve the VRPSD. In §7.1, we describe a procedure to calculate

the expected cost of a VRPSD route. In §7.2, we describe our simulated annealing procedure

and discuss the details of our computer implementation. In §7.3, we report our experience with

benchmark problem instances for the VRPSD. In §7.4, we examine the computational benefit of

employing the updating procedure outlined in §6.

7.1 Route Cost Calculation

Teodorović and Pavković (1992) provide a formula to calculate the expected cost of an a priori

VRPSD route. In this section, to ease the development of computer code to implement our method,

we show how to apply the equation using our cyclic-order notation. The procedure we describe is

implied in each call to Sweep(·) in Algorithm 1; whenever a route is added to the candidate route

set, its cost must be calculated and given as input to the solution extraction procedure of §4.3.

As discussed in §2, for a VRPSD route we employ the a priori policy of Laporte et al. (2002),

which requires a vehicle to visit customers in the sequence defined by a given vehicle route.

When a route failure occurs, demand at that customer must be fully served via return trips to

the depot before continuing on to the next customer on the route. As shown by Teodorović and

Pavković (1992), under this policy the expected cost of a route is the sum of the planned or de-

terministic travel cost and the expected cost of route failures. For a route ⟨π(i), π(j)⟩, a call to

Cost(⟨π(i), π(j)⟩) in Algorithm 5 returns the expected route cost.

Lines 2-7 of Algorithm 5 calculate the deterministic travel cost of traversing the route, where

ci,j , defined in §2, denotes the travel cost of traveling from customer i to customer j. Lines 8-16

calculate the expected cost of route failures and add this to the total cost, which is returned on

line 17. We define ξπ(i),π(t) = ξπ(i) + ξπ(forw(i,1)) + ξπ(forw(i,2)) + · · · + ξπ(forw(i,dist(i,t))) to be

the convolution of the random customer demands beginning in position i and advancing forward

through position t of a cyclic order π. Each iteration of the loop beginning on line 11 calculates

the expected cost of the lth route failure at customer π(p), where

F t(y) =

P
{
ξπ(i),π(t) ≤ y

}
, t ∈ {i,forw(i, 1),forw(i, 2), . . . ,forw(i,dist(i, j))}

1, otherwise.
(4)

If the supports for customer demands are not bounded above, then an infinite number of route

failures is possible, thus the loop beginning on line 11 should repeat for an infinite number of
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iterations. However, as the probability of a large number of route failures at a given customer

is typically quite small, the loop is terminated based on some tolerance criteria, such as a small

percentage increase in the total cost calculation.

Algorithm 5 Expected Cost Calculation of a VRPSD Route
1: procedure COST(⟨π(i), π(j)⟩)
2: cost← c0,π(i)

3: p← i

4: repeat
5: cost← cost+ cπ(p),π(forw(p,1))

6: until p = j

7: cost← cost+ cπ(j),0

8: p← i

9: repeat
10: l← 1

11: repeat
12: cost← cost+ 2

[
F back(p,1)(lD)− F p(lD)

]
c0,π(p)

13: l← l + 1

14: until termination criteria met
15: p← forw(p, 1)

16: until p = forw(j, 1)

17: return cost

We note that the Cost(·) procedure of Algorithm 5 iterates through the customers on a route

⟨π(i), π(j)⟩ in the order they appear in π. If the customer sequence is different, then Algorithm 5

is simply applied to the appropriate sequence. The sweep-based methods discussed in §4 utilize a

traveling salesman heuristic to improve the sequence of customers in each sweep-generated route.

In our code development, however, we allow the cyclic order to define the sequence of customers

in a route. This offers two computational advantages. First, we can store a route r in memory as the

pair ⟨first(r),last(r)⟩, as opposed to an array containing the sequence of customers. Second,

we can calculate the cost of a route more efficiently by updating the cost from knowledge of a sub-

route rather than by recomputing the entire cost via Algorithm 5. For example, for a VRPSD route

⟨π(i), π(forw(p, 1))⟩, both portions of the expected route cost can be calculated from the expected

cost of route ⟨π(i), π(p)⟩ as ⟨π(i), π(forw(p, 1))⟩ simply inserts customer π(forw(p, 1)) at the

end of route ⟨π(i), π(p)⟩. This simple updating is not possible if the sequence of customers on a

route is not defined by the cyclic order.

The drawback of this approach is that it may be possible to improve the route set corresponding

to a cyclic order π by changing the sequence of the customers on one or more routes contained in

R(π). Improving the quality of routes in R(π) in turn may make it possible to assemble a better

VRP solution via the extraction procedure of §4.3. However, because the size ofR(π) can be quite
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large, optimizing each individual route in the candidate route set significantly increases computa-

tion time. As we evaluate many cyclic orders during our search process, rather than performing the

costly optimization of individual routes in R(π), we aim to find the appropriate routes by quickly

evaluating more cyclic orders during our search.

Further, we consider only the forward orientation of each route. This is in contrast to some

methods (e.g., Laporte et al. 2002) that, for each route, also calculate the expected cost of the

backward orientation and reverse the visit sequence if the expected cost is less than that of the

forward orientation. Our experience indicates that allowing the search procedure to systematically

reverse route orientations is much faster than calculating the cost of two orientations for each route.

7.2 Simulated Annealing Procedure

We demonstrate the potential of cyclic-order neighborhoods to facilitate the discovery of high

quality solutions for the VRPSD by embedding them within a simulated annealing framework.

Simulated annealing (Kirkpatrick et al. 1983; Johnson et al. 1989, 1991) is a local search algorithm

in which non-improving moves are probabilistically accepted in an attempt to avoid becoming

trapped in a low-quality, locally optimal solution. We choose simulated annealing to govern the

search process for two reasons. First, simulated annealing has proven successful on a variety of

difficult combinatorial problems such as the set covering problem (Brusco et al. 1999), the VRP

with time windows (Bent and Van Hentenryck 2004), and the orthogonal stock-cutting problem

(Burke et al. 2009), to name a few. Second, the simple logic of simulated annealing (as opposed

to a more complex search procedure) allows us to more easily distill the impact of the cyclic-order

neighborhoods on the quality of the final solution.

Our simulated annealing procedure is executed in two phases. In the first phase, we solve the

classical VRP. Thus, for a given cyclic order π, when calculating the cost of a candidate route in

R(π), we only consider the deterministic travel cost along each route segment. The second phase

seeks to improve the solution by explicitly accounting for the cost of recourse actions resulting

from potential route failures. In this phase, the cost of a candidate route includes the expected

cost resulting from potential route failures (Teodorović and Pavković 1992). We observe that, for

a variety of VRPSD instances, a high-quality VRP solution is also a high-quality VRPSD solution,

thus motivating our two-phase approach (Savelsbergh and Goetschalchx 1995 propose a similar

two-phase procedure). The primary benefit of the two-phase procedure is reduction in computation

time. Although the second phase can serve as a stand-alone solution procedure (and this yields

good VRPSD solutions), initializing the second phase with the first-phase solution accelerates the

discovery of high quality VRPSD solutions. As the first phase can be executed quickly relative to
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the second phase (due to the extra computation required to calculate the expected cost of routes in

the second phase), the two-phase procedure results in an overall reduction in computational effort.

Algorithm 6 outlines the steps required to execute a single phase of our simulated annealing

procedure. Three cyclic orders are maintained – πbest, πcurr, and πneigh – corresponding to the best-

found, the current, and a neighbor cyclic order, respectively. An iteration of the inner loop begins

on line 3 by randomly selecting one of five neighborhood structures: 1-shift, 2-shift, 3-shift, re-

verse, or exchange. Denoting the resulting neighborhood structure by N(·), line 4 randomly selects

a solution πneigh in N(πcurr), the neighborhood of the current solution. Line 5 probabilistically up-

dates πcurr with πneigh, where (y)+ = y if y > 0 and 0 otherwise, τ is the current temperature (a

control parameter in simulated annealing), and g(·) is a function representing the evaluation of a

cyclic order (see §4.2 and §4.3) and returns the cost f(·) of the associated route set. Lines 6 and 7

update the best-found cyclic order. The inner loop terminates after 7,000 iterations. The outer loop

implements a geometric cooling schedule and terminates after at least 100 iterations and without

having updated the best-found cyclic order for 75 successive iterations.

Algorithm 6 Simulated Annealing
1: repeat
2: repeat
3: Randomly select neighborhood N(·) ∈ {1-shift, 2-shift, 3-shift, reverse, exchange}
4: Randomly select πneigh ∈ N(πcurr)

5: πcurr ← πneigh with probability exp{−((g(πneigh)− g(πcurr)))
+/τ}

6: if g(πcurr) < g(πbest) then
7: πbest ← πcurr

8: until 7,000 iterations
9: τ ← τ × 0.97

10: until At least 100 iterations and not update πbest for 75 successive iterations

The first phase initializes πbest and πcurr with a radial ordering of customers about the depot (i.e.,

customers are ordered by their polar angle with respect to a horizontal axis through the depot). For

some benchmark problems in the literature where customer locations are unknown (i.e., only a

travel cost matrix is available), a randomly generated cyclic order can serve as the initial solution.

The second phase initializes πbest and πcurr with the best cyclic order returned in the first phase.

Each phase begins with an initial temperature of τ = 10. Based on computational tests that explore

a wide set of parameters, we observe these parameters to perform well for the VRPSD instances

considered in this paper.

We implement our simulated annealing procedure for the VRPSD in C++. We execute all
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computational experiments on 2.8GHz Intel Xeon X5660 processors with 12GB of RAM and the

CentOS 5.3 operating system (we do not utilize parallel processing).

7.3 VRPSD Results

In this subsection, we compare the performance of cyclic-order neighborhoods embedded within

simulated annealing to benchmark results for the VRPSD. To facilitate the comparison, we utilize

the same problem instances as Christiansen and Lysgaard (2007), who adapt VRP instances to

the VRPSD by assuming that customer demands are independent Poisson random variables with

the mean demand for each customer equal to the deterministic value of the demand given in the

underlying VRP problem instance (publicly available via Ralphs 2008). The name of each problem

instance indicates the number of customers (including the depot) and the minimum number of

required vehicles. For example, instance A-n38-k5 requires 37 customers be serviced by at least 5

vehicles. All of the problem instances we consider use Euclidian distances.

Table 3 compares the solutions obtained by our two-phase procedure for the VRPSD to the

optimal solutions of Christiansen and Lysgaard (2007) and to the expected cost of best known

routing plans for the classical VRP, e.g., by taking demand uncertainty into account when evaluat-

ing the solutions, but not when computing them. The latter is included because for some instances

Christiansen and Lysgaard (2007) do not obtain an optimal solution, and thus the expected cost of

following high quality classical VRP routes serves as an additional benchmark. Further, a com-

parison to best known routing plans for the classical VRP allows one to measure the benefit of

modeling uncertainty in the optimization. In the columns displaying the results of Christiansen

and Lysgaard (2007), when a value is reported for both the number of vehicles and the cost, this

reported cost corresponds to the optimal routing cost. If only a cost is reported, then this is the

cost of the best integer solution obtained within 1200 CPU seconds on a Pentium Centrino 1500

MHz processor (Christiansen and Lysgaard 2007 do not report the number of vehicles in these

cases). If neither the number of vehicles nor a cost is reported (such entries are denoted by “–”),

then an integer solution was not obtained within 1200 CPU seconds. The only exception to this

is instance P-n60-k15, where Christiansen and Lysgaard (2007) report a CPU time of 1348 CPU

seconds, which is the time required to solve the root node in their branch and price procedure. In

this case, the root node yielded an optimal integer solution which they report.

The columns of Table 3 corresponding to our approach report, over 10 runs, the best solution

values, the average solution values, the standard deviation of solution values, the average CPU

seconds, and the “Gap,” which is the percentage above the minimum of the solution values given

in columns 3 and 6; if column 3 does not contain a value, then the value in column 6 is used to
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Christiansen and Lysgaard Best Deterministic Simulated Annealing with Cyclic-Order Neighborhoods
Best Best Avg. St. Avg.

Problem # Veh. Cost CPU # Veh. Cost # Veh. Cost Cost Dev. CPU Gap
A-n32-k5 5 853.60 282 5 890.13 5 853.60 853.60 0.00 199.8 0.00
A-n33-k5 5 704.20 8 5 722.99 5 704.20 705.91 2.79 178.2 0.00
A-n33-k6 6 793.90 49 6 816.58 6 793.90 793.95 0.10 141.1 0.00
A-n34-k5 – 827.87 1200 5 839.95 6 826.87 827.26 1.23 236.4 -0.12
A-n36-k5 – – – 5 907.55 5 858.71 859.48 1.42 276.1 -5.38
A-n37-k5 – 708.34 1200 5 709.83 5 708.34 709.67 4.18 386.9 0.00
A-n37-k6 – 1030.75 1200 6 1069.32 7 1030.73 1031.74 3.20 205.5 0.00
A-n38-k5 – 778.09 1200 5 831.99 6 775.14 775.25 0.35 313.4 -0.38
A-n39-k5 6 869.18 3 5 903.26 6 869.18 869.58 0.46 257.6 0.00
A-n39-k6 6 876.60 279 6 960.81 6 876.60 883.44 7.29 239.9 0.00
A-n44-k6 – 1025.48 1200 6 1047.18 7 1025.48 1029.72 6.10 281.4 0.00
A-n45-k6 – – – 6 1096.19 7 1026.73 1027.92 1.36 301.4 -6.34
A-n45-k7 7 1264.83 882 7 1302.20 7 1264.99 1288.70 17.13 216.0 0.01
A-n46-k7 – 1002.41 1200 7 1069.66 7 1002.22 1003.19 1.07 314.1 -0.02
A-n48-k7 – – – 7 1248.27 7 1187.14 1188.06 1.96 292.0 -4.90
A-n53-k7 – – – 7 1180.10 8 1124.27 1129.36 4.06 468.8 -4.73
A-n54-k7 – – – 7 1342.87 8 1287.07 1292.29 8.87 409.4 -4.16
A-n55-k9 – – – 9 1264.18 10 1179.11 1184.77 5.70 265.5 -6.73
A-n60-k9 – – – 9 1608.40 10 1529.82 1535.35 7.38 393.7 -4.89
E-n22-k4 4 411.57 1 4 411.73 4 411.57 411.57 0.00 104.1 0.00
E-n33-k4 4 850.27 86 4 850.27 4 850.27 851.24 3.07 371.7 0.00
E-n51-k5 – – – 5 553.26 6 552.26 552.81 0.79 586.0 -0.18
P-n16-k8 8 512.82 0 8 512.82 8 512.82 512.82 0.00 9.0 0.00
P-n19-k2 3 224.06 153 2 229.68 3 224.06 224.06 0.00 234.8 0.00
P-n20-k2 2 233.05 352 2 233.05 2 233.05 233.05 0.00 269.6 0.00
P-n21-k2 2 218.96 5 2 218.96 2 218.96 218.96 0.00 332.7 0.00
P-n22-k2 2 231.26 219 2 231.26 2 231.26 231.26 0.00 352.3 0.00
P-n22-k8 9 681.06 0 8 707.80 9 681.06 681.06 0.00 28.6 0.00
P-n23-k8 9 619.52 1 8 662.31 9 619.53 619.57 0.12 21.1 0.00
P-n40-k5 5 472.50 6 5 475.45 5 472.50 472.50 0.00 367.2 0.00
P-n45-k5 – – – 5 546.05 5 533.52 537.13 4.19 603.8 -2.29
P-n50-k10 – – – 10 792.20 11 760.94 764.12 3.90 150.6 -3.95
P-n50-k7 – – – 7 606.41 7 582.37 584.95 2.33 343.0 -3.96
P-n50-k8 – – – 8 724.69 9 669.81 674.11 4.54 225.3 -7.57
P-n51-k10 11 809.70 430 10 859.24 11 812.74 816.95 4.27 159.9 0.37
P-n55-k10 – – – 10 797.21 10 745.70 752.36 3.94 208.9 -6.46
P-n55-k15 18 1068.05 792 15 1191.34 18 1068.05 1072.17 3.71 117.0 0.00
P-n55-k7 – – – 7 616.44 7 588.56 593.10 3.15 452.8 -4.52
P-n60-k10 – – – 10 831.24 11 804.24 810.22 2.55 296.1 -3.25
P-n60-k15 16 1085.49 1348 15 1133.30 16 1087.41 1098.11 6.91 134.8 0.18

Table 3: Computational Results for the VRPSD
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compute the gap. When calculating the gap, for example, if the best known solution value is x and

our method returns a solution value of y, then the gap is (y − x)× 100/x percent. A negative gap

indicates that the solution value obtained by our two-phase procedure improves upon the solution

value of Christiansen and Lysgaard (2007), the value of the best deterministic solution, or both.

Of the 19 problem instances in which Christiansen and Lysgaard (2007) obtain optimal solu-

tions, our two-phase procedure obtains 16 optimal solutions. The percentages above the optimal

solution values are small for the three instances where we obtain suboptimal solutions: A-n45-

k7 (gap of 0.01 percent), P-n51-k10 (gap of 0.37 percent), and P-n60-k15 (gap of 0.18 percent).

Of the 21 problem instances in which Christiansen and Lysgaard (2007) do not obtain provably

optimal solutions, our two-phase procedure matches or improves upon the best integer solution re-

turned by the method of Christiansen and Lysgaard (2007) or the expected value of the best known

deterministic solution. The average gap for these 21 instances is -3.33 percent. The difference in

computer architectures makes it difficult to compare run times, but we find the average run time of

268.7 CPU seconds for our two-phase method to be acceptable given that practitioners typically

employ VRPSD solutions as a set of fixed routes to be used over extended periods (Savelsbergh and

Goetschalchx 1995). As our search procedure is designed for the general class of VRPs described

in §1, and not tailored specifically to the VRPSD, we find these results to be promising.

7.4 Benefit of Updating Procedure

We demonstrate the computational savings of our proposed updating schemes on 10 of the prob-

lem instances considered by Christiansen and Lysgaard (2007). Table 4 contains the percentage

decrease in CPU time when R(π′) is constructed by updating R(π) for a cyclic order π′ in the

neighborhood of π (as opposed to totally reconstructingR(π′)). We compute each entry of Table 4

by observing the CPU time required to evaluate each cyclic order in the neighborhood of π, where

π is the radial ordering of customers.

Overall, the updating procedures provide substantial computational savings. Factors affecting

the magnitude of computational savings include problem size (in terms of the number of cus-

tomers), type of cyclic-order neighborhood, and the required fleet size. By comparing results for

instances with similar numbers of vehicles but different numbers of customers, we observe that as

the number of customers increases, the computational savings also tend to increase (although this

is not always true depending on the location and demand of the additional customers).

The type of cyclic-order neighborhood also affects the magnitude of computational savings.

The savings for the reverse neighborhoods are, on average, 33 percent less than the savings afforded

by the updating schemes for the k-shift and exchange neighborhoods. When updatingR(π′) from
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Problem 1-shift 5-shift 10-shift Reverse Exchange
A-n38-k5 73.0 63.6 60.7 31.6 71.1

A-n44-k6 76.8 68.6 68.2 35.6 74.1

A-n45-k6 76.7 68.5 66.7 36.5 73.8

A-n53-k7 76.0 70.2 69.3 36.9 75.2

P-n20-k2 39.4 24.4 26.3 17.2 34.1

P-n21-k2 38.6 23.7 20.5 17.1 33.8

P-n22-k8 77.8 76.2 78.6 34.5 71.4

P-n23-k8 78.9 73.3 70.0 33.3 70.0

P-n50-k10 84.2 80.0 80.6 40.0 82.1

P-n50-k8 80.4 76.0 75.6 38.6 78.6

Average 70.2 62.5 61.7 32.1 66.4

Table 4: Percentage decreases in CPU time whenR(π′) is obtained by updatingR(π)

R(π), the reverse neighborhood requires the removal and insertion of more routes than the k-

shift and exchange neighborhoods. For a similar reason, the computational savings for the k-shift

neighborhood decreases as k increases. In general, the computational savings for a neighborhood

is negatively correlated with the degree of change it causes in the set of routes corresponding to

the cyclic order.

We achieve larger computational savings by updating rather than reconstructing R(π′) for in-

stances in which more vehicles are required to meet customer demand, i.e., vehicle capacity is

more constraining. By examining problem instances in Table 4 with similar numbers of customers

but different numbers of vehicles, we can observe this effect. For example, comparing instances

P-n21-k2 and P-n22-k8 across all five neighborhood structures suggests that the updating proce-

dures provide greater computational savings when eight vehicles are required instead of only two.

We can explain this observation by examining typical sets of candidate routes for each problem

instance. The size of each route subset R(π(i)) in P-n22-k8 is generally smaller than the size of

each route subset R(π(i)) in P-n21-k2. In other words, because vehicle capacity is more restric-

tive in P-n22-k8, each call to the Sweep procedure in Algorithm 1 generates fewer routes than for

problem instance P-n21-k2. Consequently, the number of routes in R(π) is larger for P-n21-k2,

thus requiring the removal and insertion of more routes when updating R(π) for a neighboring

cyclic order. Thus, as vehicle capacity decreases relative to demand, the procedures outlined in

Algorithms 2, 3, and 4 provide more of an advantage over totally reconstructingR(π′).
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8 Conclusion and Future Research Directions

This paper examines cyclic-order neighborhoods for a general class of VRPs and proposes proce-

dures to facilitate the efficient search of such neighborhoods in local search schemes. We demon-

strate that, when embedded in a simulated annealing framework, cyclic-order neighborhoods are

capable of obtaining high quality a priori solutions for the VRPSD. Without tailoring our solution

procedure to this specific routing problem, we are able to match 16 of 19 known optimal VRPSD

solutions.

We suggest three possibilities for future research directions. First, it may be beneficial to inves-

tigate different methods to search the space of cyclic orders. One way to accomplish this is through

search memory, which might exploit information contained in a history of candidate route sets or

may identify common sequences of customers in a history of cyclic orders. Exploiting information

pertaining to customer locations may also be helpful. For example, customers on opposite sides

of the depot are unlikely to be serviced on the same route in an optimal solution. Thus, the effec-

tiveness of the local search could possibly be improved by avoiding the consideration of neighbor

cyclic orders that result in solutions with routes servicing distant customers. Such a criterion could

serve as the basis for neighborhood reduction mechanisms such as “don’t look bits” or candidate

list strategies often employed in iterated local search (Bentley 1992) and tabu search (Glover and

Laguna 1998). Thus, including such routes in the set of candidate routes is unnecessary. Such

reductions in neighborhood size may be especially advantageous when it is necessary to evaluate

all cyclic orders in a given neighborhood, such as in best-improving search, variable neighborhood

search, or tabu search.

Second, it may be possible to expand the class of VRPs to which cyclic order neighborhoods

apply (see §1) to include heterogeneous fleets of vehicles. This would likely require a modification

to the graph structure of the shortest path problems used to extract the best solution from a set of

candidate routes in Ryan et al. (1993) and Boctor and Renaud (2000).

Third, although this paper focuses on the VRPSD, we note that our methodology is applicable

to a broader class of problems in which a minimum cost partition of a set of items must be obtained

such that the cost of a given partition is separable in the individual parts and any constraints pertain

to individual parts rather than collections of parts. Thus, cyclic-order neighborhoods may find

application in multi-permutation and ordering problems beyond vehicle routing. Our intuition

suggests that cyclic-order neighborhoods will be most effective for problems where the order of

items within a part directly impacts the cost of the part. For example, this problem class includes

some parallel machine scheduling problems (e.g., see Armentano and Filho 2007). If the objective

is to minimize tardiness with respect to a set of due dates, then the order in which jobs are processed
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directly impacts the objective function. Some bin packing problems also belong to this problem

class (see Lodi et al. 2002 for a review of recent advances in bin packing). However, because the

value of a packing is typically independent of the packing order, cyclic orders obtained by simply

rearranging the packing order may yield the same solution.
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