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Abstract. The paper addresses the problem of dynamically scheduling inbound trucks

at a warehouse with known service times and uncertain arrival times. Truck arrival

time distributions are hidden. However, we approximate them via estimated times

of arrival (ETAs). Motivated by collaboration with Poste Italiane, which manages

one of Italy’s largest parcel logistics networks, the objective is to minimize the total

expected waiting time. We use information relaxations and an information penalty

to develop a dual bound on the cost of an optimal policy. A series of theoretical

analyses establishes the dual problem and then transforms it from a stochastic dynamic

program to a compact mixed integer linear program. On average, the penalized dual

bound is nearly 10 percent stronger than a bound based on perfect information. We

propose a lookahead policy that uses ETAs to adapt decisions to new information.

When the dispatcher can fully observe truck arrival time distributions, the gap between

the policy value and the dual bound is less than one percent. This result suggests that

when distributions are hidden, the larger duality gap of about 10 percent we find is due

primarily to partial observability and that the policy makes good decisions. Relative to

industry practice, the lookahead policy decreases expected waiting time by 29 percent,

on average. Further, the lookahead policy selects actions quickly enough to be used in

practice.

Key words: truck scheduling, estimated time of arrival (ETA), yard management,

POMDP, information relaxation, information penalty

1. Introduction

The global warehousing market was valued at more than one trillion US dollars in 2023 (Grand View

Research 2023). Driven by factors including the expansion of e-commerce, increasing globalization,
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technological advancements, and the growing complexity of logistics chains, the warehousing

market is expected to grow more than eight percent annually through 2030 (Grand View Research

2023). In this context, management of inbound trucks at distribution centers and warehouses plays

a key role. The short lead times and responsiveness expected by customers depend in part on

the scheduling policy that assigns trucks to unloading docks at a warehouse. Upon the arrival of

inbound trucks, dispatchers assign them to available docks, otherwise they are assigned to waiting

areas. Such assignments are typically made via rules of thumb, e.g., first-come-first-served (Mejía

et al. 2023), and rarely account for trucks that will arrive later in the day. These methods often lead

to queues, and waiting time incurred by trucks beyond necessary service time can lead to delays

that domino across the network. Optimizing truck assignments to account for future arrivals has

the potential to reduce waiting time and boost network-wide performance metrics.

Assigning inbound trucks to docks is challenging even when arrival times are known. Indeed,

with only a single dock, the problem is strongly NP-hard (Pinedo 2022). In practice, truck arrival

times are uncertain for many reasons. In most transportation research, uncertain arrival times

are characterized by probability distributions. It is typically assumed that these distributions are

known or can be estimated from data. However, this assumption is impractical for inbound truck

applications where multiple carriers operate across various logistics networks. In such cases, a

carrier separately manages routes for its vehicles, and a visit to a particular warehouse is only

one of many stops. Daily adjustments by carriers to origins, destinations, and routes—which are

unknown to the warehouse dispatcher—make it difficult to meaningfully characterize probability

distributions on truck arrival times. Moreover, even if the dispatcher was privy to carriers’ plans,

she does not have the means to collect the data necessary to estimate the distributions. For each

possible route, estimation would require repeated observation of arrival times that vary dynamically

due to congestion, service times at other stops, breaks for drivers, weather, and vehicle failures.

Thus, it is is unrealistic to suppose that a warehouse can collect such data.

Modern sensing technology can mitigate the challenges surrounding the estimation of truck

arrival times. Today, many carriers outfit their trucks with devices that provide real-time locations.

With help from third-party software firms, the devices facilitate point estimates of arrival times.

These estimated times of arrival (ETAs) are communicated with high frequency to the carriers,

and we assume the carriers share ETAs with the warehouse. The ETAs may be treated as noisy

signals of arrival time distributions the warehouse cannot directly observe. Through filtering, ETAs

enable rolling approximations of truck arrival time distributions, which we call belief distributions.
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In this paper, we show that belief distributions facilitate scheduling policies for inbound trucks that

significantly reduce waiting times relative to current practice.

A conventional approach to dynamically scheduling inbound trucks models the problem as

a Markov decision process (MDP), which assumes truck arrival time distributions are readily

available. However, because in reality the distributions are hidden from the dispatcher, an MDP

is difficult to operationalize. Instead, we formulate the problem as a partially-observable Markov

decision process (POMDP). In contrast to an MDP model, our POMDP model uses ETAs to update

belief distributions on truck arrival times. Although the addition of belief distributions to the state

variable makes the model more complex, a POMDP more accurately models the actual information

available to dispatchers.

Our POMDP model is motivated by collaboration with the logistics division of Poste Italiane,

which manages one of Italy’s largest parcel logistics networks. As Poste Italiane looks to improve

network-wide lead times and responsiveness, it is leveraging ETAs to upgrade scheduling at its

warehouses. Although Poste Italiane’s warehouses have many docks, they are partitioned into oper-

ational groups according to features, such as unloading equipment, product category, and storage

constraints. Before their arrival to the warehouse, inbound trucks are tied to an operational group.

Because each group functions separately, trucks in one group may be scheduled independently

from trucks in another group. Thus, we focus on scheduling trucks across a single group. Upon a

truck’s arrival, the dispatcher assigns the truck to an available dock within its group or directs the

truck to wait in the yard. The dispatcher may direct the truck to wait even if one or more docks

are available. Because docks within a group are similar, they may be treated as a pool of identical

resources. Thus, a truck may be assigned to any dock within the group and the truck’s service time,

which we assume is known, is the same across all docks in the group. Once service begins, it cannot

be preempted. Poste Italiane’s objective is to minimize the total expected waiting time across all

trucks over the operating horizon.

We propose an approximate algorithm to dynamically schedule trucks. Our policy utilizes a

lookahead mechanism to estimate the future costs of a decision taken from a given state. The

lookahead mechanism takes as input a scenario of truck arrival times, then uses iterated local search

(ILS) to approximately solve the corresponding deterministic scheduling problem. A decision

is evaluated by employing the lookahead mechanism across a range of scenarios that may be

encountered one step into the future. As belief distributions evolve with the receipt of ETAs, so do

the likelihoods of the scenarios. In this way, the policy adapts its decisions to new information.
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The vast majority of dynamic and stochastic transportation research studies assess solution quality

by comparison to benchmark policies. This approach highlights relative improvement but leaves

open the question of how much better an optimal policy might be. Among studies that establish a

dual bound on the cost of an optimal policy, most work with perfect information relaxations of an

MDP model. This is a natural approach because the perfect information problem often corresponds

to a familiar deterministic problem. However, because the value of information is high, this method

often results in a loose bound.

We use two information relaxations and an information penalty to develop a dual bound that

is much stronger than a bound obtained only through perfect information. In addition to a perfect

information filtration, we employ a distribution filtration that gives the dispatcher knowledge of

the unobserved truck arrival time distributions. As we show, scheduling under the distribution

filtration is equivalent to optimization via an MDP model. Our dual bound allows trucks to be

scheduled with perfect knowledge of future arrival times, but it penalizes the dispatcher for using

this information. Specifically, instead of accruing known wait times, the dispatcher accrues wait

times in expectation. Expected waiting time is calculated via MDP contributions. In this way, the

dual problem incentivizes a clairvoyant dispatcher to select actions as if she were not wholly aware

of actual truck arrival times. Penalizing decisions in this fashion not only yields a dual bound for

the POMDP, but also for the MDP. A series of theoretical analyses establishes the dual problem and

then transforms it from a stochastic dynamic program to a compact mixed integer linear program

(MILP). The mathematical program representation is desirable because the MILP is amenable to

solution via commercial solvers. Although our analyses are specific to inbound truck scheduling

with ETAs, they serve as a template for the transportation science and logistics community to

develop dual bounds for other problems.

The lookahead policy and dual bound are vetted on a range of problem instances representative of

real operating scenarios. Smaller instances correspond to settings often found in urban operations

or retail receiving, which typically manage a handful of trucks across one or two docks during a

given day. The scale of these instances is modest enough to facilitate comparison of the lookahead

policy with the dual bound, which eventually becomes intractable as problem size grows. Because

the dual bound is valid for both the POMDP and MDP settings, we gauge policy quality via both

models. Experiments show that the dual bound is much stronger than a more conventional bound

based on perfect information. On average, the penalized dual bound is nearly 10 percent larger.

Moreover, the bound approaches its upper limit. When the lookahead policy is applied to the MDP,
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where truck arrival time distributions are given, the average duality gap is less than one half of
one percent. Thus, we show empirically that for practical purposes the lookahead policy is nearly
an optimal MDP policy. When the lookahead policy is implemented in the more realistic POMDP
setting, where truck arrival time distributions are hidden, the duality gap is larger. However, the
lookahead policy’s strong performance in the MDP setting suggests that the larger gap is primarily
due to partial observability rather than suboptimality. Because the policy must work with belief
distributions on arrival times instead of with actual distributions, policy cost is higher and the
duality gap is bigger. Larger instances are inspired by our collaboration with Poste Italiane. These
require the management of many truck arrivals across many docks. Experiments on larger instances
demonstrate significant reductions in waiting relative to a first-come-first-served policy, which is
common in practice (Mejía et al. 2023). On average, the lookahead policy decreases expected
waiting time by 29 percent. Experiments also show that the lookahead policy selects actions quickly
enough to be used in real time.

Additional computational work points to the utility of ETAs. The extant literature on truck
scheduling treats ETAs as point forecasts for actual arrival times. Experiments show that filtering
ETAs to maintain belief distributions on truck arrival times leads to substantially better scheduling
decisions. Without filtering, the lookahead policy incurs waiting time as if it does not look ahead
at all. With expected waiting time nearly nine percent higher, on average, without filtering the
lookahead policy performs like the rolling horizon procedures that dominate the truck scheduling
literature. The ability to improve decisions hinges on using ETAs to characterize uncertainty in truck
arrival times. We also gauge the usefulness of ETAs as their volatility increases. Even when ETAs
are relatively weak signals of unobserved arrival time distributions, they still facilitate lookahead
policies that handily outperform industry practice.

To summarize, our contributions are as follows:
• Dynamic Scheduling Model with ETAs. We formulate a POMDP model to dynamically

schedule inbound trucks to a warehouse in the face of uncertain arrival times. In contrast to
much of the research in transportation, our model recognizes that dispatchers do not have
direct access to distributions. Our model filters ETAs to maintain belief distributions on truck
arrival times.

• Penalized Dual Bound. We develop a dual bound on the cost of an optimal policy. In contrast
to most transportation research, which gauges quality via comparison to benchmarks or to
loose bounds based on perfect information, we use an information penalty to obtain a much
stronger bound.
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• Lookahead Policy. We propose a lookahead policy that uses ETAs and belief distributions on

truck arrival times to adapt its decision making. When the dispatcher can fully observe truck

arrival time distributions, the duality gap is very small, indicating that the policy is nearly

optimal. This result suggests that when distributions are hidden, a larger duality gap is due

primarily to partial observability. Additionally, the policy is suitable for real-time decisions,

even at scale.

• Value of ETAs. The literature on truck scheduling treats ETAs as point estimates. We show

that filtering ETAs to characterize uncertainty in truck arrival times is key to better scheduling

decisions. We also show that even when ETAs are volatile signals of truck arrival time

distributions, they lead to policies that outperform industry practice.

The paper proceeds as follows. We review related literature in §2. The POMDP model is presented

in §3. The loookahead policy is described in §4. The dual bound is developed in §5. Computational

experiments are outlined in §6. We present conclusions in §7.

2. Related Literature

Our research contributes to the literature on truck scheduling with uncertain arrival times and

machine scheduling with random releases. In this section, we discuss how our work is similar to

and different from the research in these areas.

The literature on truck scheduling with uncertain arrival times consists of static and dynamic

solution methodologies. Static approaches fix a schedule at the beginning of the operating horizon

and follow it no matter when trucks arrive. In the context of cross-dock operations, Konur and

Golias (2013) and Heidari et al. (2018) frame such problems as a bi-level program that minimizes

waiting and service costs. They obtain heuristic solutions via a genetic algorithm. Xi et al. (2020)

optimally solve a robust formulation. In each study, the goal is to identify a schedule that performs

well across a range of arrival times.

Dynamic solution methods aim to improve on static methods by allowing the schedule to change

in response to realized truck arrival times. Yu et al. (2008) treat the problem of minimizing the

expected labor time required to process an uncertain volume of freight at a consolidation facility.

When a truck arrives, it is assigned to the dock that minimizes its immediate service time. Song

et al. (2022) consider both routing and scheduling costs. In the second stage of their two-stage

stochastic program, scheduling is governed by a first-come-first-served policy, meaning trucks

queue for docks based on the order in which they arrive. While neither method operates based on
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a fixed schedule, both are myopic in the sense that there is no consideration of how actions in the

present are connected to subsequent decisions.

In contrast, rolling horizon methods are more anticipatory. When these methods assign trucks

to docks, they consider the potential impact of a decision now and across future periods. This is

typically accomplished via optimization across upcoming assignments, with random arrival times

replaced by mean values. The objective of the rolling horizon’s deterministic optimization reflects

the objective of the underlying dynamic and stochastic problem. In each of the following references,

the rolling horizon objective is to minimize total wait time or wait time due to deviation from an

initial schedule. Cekała et al. (2015) and Xu et al. (2022) use genetic algorithms to heuristically

solve the rolling horizon problem. Larbi et al. (2011) employ a greedy heuristic. Nasiri et al. (2022)

use a solver to obtain exact solutions. The methods of Vanga et al. (2022) and Modica et al. (2024)

take current ETAs as truck arrival times instead of mean values. Modica et al. (2024) heuristically

solve the rolling horizon problem via a genetic algorithm and Vanga et al. (2022) use a solver to

find exact solutions. Whether solutions to the rolling horizon optimization are heuristic or exact,

the mechanism is an approximation of the original problem and carries no performance guarantee.

Our research draws on aspects of both static and dynamic methodologies for truck scheduling.

Although our lookahead policy is dynamic, it uses static schedules to select actions. But unlike

the rolling horizon approach, which operates on the current state, our lookahead policy considers

how decisions might be made across a range of future scenarios. In contrast to the dynamic truck

scheduling literature, which fails to rigorously model state dynamics and uncertainties, our POMDP

model recognizes that ETAs can change across time and that beliefs about arrival times should

consequently be modified. Furthermore, we leverage relaxations of the POMDP to establish a dual

bound. Until now, the dynamic truck scheduling literature has relied on comparison to heuristic

policies to gauge quality. Because our dual bound is an absolute benchmark, it provides a means of

measuring quality relative to the cost of an optimal policy. Moreover, the rigorous incorporation of

ETAs into model, method, and dual bound adds a realistic dimension to our work that is not found

in the extant literature.

Truck scheduling with uncertain arrival times is analogous to machine scheduling with stochastic

release dates: jobs correspond to trucks, machines correspond to docks, and arrival times corre-

spond to release dates. Whereas truck scheduling usually seeks to minimize waiting time, machine

scheduling objectives vary. They include the minimization of makespan, completion time, and

weighted tardiness. To emphasize the difficulty of this class of problems, even when release dates
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are known with certainty and there is only one machine, the problem is strongly NP-hard (Pinedo

2022).

Like the truck scheduling literature with uncertain arrival times, the machine scheduling literature

with stochastic release dates is limited. Liu et al. (2021) approach the problem in two stages.

First, assign jobs to machines. Then, after uncertainties are realized, jobs are sequenced on their

assigned machines. The objective is to minimize setup costs plus penalties for early and late

completions. Zhang et al. (2012) and Heydar et al. (2022) propose fully dynamic reinforcement

learning methodologies. When a job is released, assignment to a machine is determined by a linear

approximation of the cost-to-go. Estimates draw on state features such as waiting jobs, idle machines,

and remaining processing time. Zhang et al. (2012) search for policies that minimize weighted

tardiness, while Heydar et al. (2022) seek energy efficient policies that minimize makespan. The

linear cost-to-go estimate of Ronconi and Powell (2010) uses state-dependent static schedules to

learn parameter values in pursuit of policies that minimize total tardiness.

Our work is applicable to machine scheduling problems with stochastic release dates, with known

processing times, with identical machines, and without preemption. In this setting, our dual bound is

a notable contribution. As we demonstrate, with full knowledge of release/arrival time distributions,

the gap between our lookahead policy and the dual bound is nearly zero, implying that the policy

is very good. Further, because the literature does not contain an analog to the ETA, such as an

estimated time of release, we address a more general problem.

Finally, the machine scheduling literature also considers the case of online release dates, meaning

release dates are random, but no distributional information is available. In contrast to the stochastic

case, the literature surrounding online release dates provides absolute benchmarks. For example,

Megow et al. (2006) and Gupta et al. (2020) establish performance guarantees, and Chou et al.

(2006) show that a list-style policy is optimal as the number of jobs tends to infinity. Although

uncertain release dates connect this stream of research to our own, the problem we address is

fundamentally different. While online releases may be common in machine scheduling, truck

arrivals to a warehouse are typically anticipated. Consequently, probabilistic information plays a

central role in our model, method, and dual bound.

3. Model

Problem Description and POMDP. We consider the problem of assigning inbound trucks to

loading docks at a warehouse. Each truck’s time of arrival to the warehouse is unknown and the
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distribution of possible arrival times is unobserved. Across the operating horizon, the decision

maker receives estimated times of arrival (ETAs) at known frequencies. The decision maker uses

ETAs to adjust belief distributions on truck arrival times. Each belief distribution characterizes

the uncertainty in arrival time. Upon arrival to the warehouse, each truck is either assigned to an

available dock or waits at the yard for future assignment. A truck occupies its assigned dock for

the duration of its known service time. Service is non-preemptive. The objective is to minimize the

expected total waiting time of the trucks. We formulate the problem as a partially-observed, semi-

Markov decision process (POMDP). The model consists of an information process that connects

truck arrival times to ETAs alongside a decision process that responds to belief distributions on

arrival times. Both are described in what follows.

ETAs and Belief Distributions. Each truck’s ETAs and arrival time distribution follow a hidden

Markov model, meaning the arrival time distribution is unobserved, but can be estimated from

observed ETAs. Because the decision maker does not know the relationship between ETAs and the

arrival time distribution, she employs Bayesian filtering (Särkkä 2013) to update belief distributions

for each truck. Denote the set of trucks by J = {1, . . . , 𝐽} and the start of the operating horizon by

𝑡0. Let 𝑒 𝑗 (𝑡) be the set of ETAs received for truck 𝑗 ∈ J to and including time 𝑡, ordered as they

are received, where each ETA is in the range [𝑡0,∞). Let 𝐴 𝑗 be the random variable describing the

arrival time of truck 𝑗 ∈ J with support [𝑡0,∞) and unobserved distribution 𝐹𝐴 𝑗
. Let 𝐹𝐴 𝑗

(𝑡) be the

belief distribution on the arrival time for truck 𝑗 at time 𝑡. If truck 𝑗 has not yet arrived by time 𝑡,

then its belief distribution requires realizations to occur at later times, meaning 𝐹𝐴 𝑗
(𝑡) is conditional

on 𝐴 𝑗 > 𝑡. Belief distributions inform state transition probabilities in the decision process. They

are updated whenever ETAs are received. The initial belief distribution 𝐹𝐴 𝑗
(𝑡0) may be taken from

historical data. We require the belief distribution to converge to the unobserved distribution by the

arrival time. Denoting by 𝑎 𝑗 a realization of 𝐴 𝑗 , this requires 𝐹𝐴 𝑗
(𝑎 𝑗 ) = 𝐹𝐴 𝑗

.

Decision Epochs. Decision epochs are indexed by 𝑘 = 0, . . . , 𝐾 . An epoch is triggered by any

of four events: (i) Arrivals. Arrival of a truck to the warehouse. We assume trucks arrive one at a

time. (ii) Service Completions. Completion of service for one or more trucks assigned to docks.

(iii) ETAs. Receipt of an ETA when at least one truck is waiting and at least one dock is available.

This event allows the decision maker to pivot in response to new arrival time estimates when

resources are available and trucks are queued. Although the receipt of every ETA updates a belief

distribution, an ETA only triggers a decision epoch under these circumstances. (iv) Trucks at the

Yard and Available Docks. Assignment of a truck to a dock when at least one truck is in the yard



Cubillos et al: Dynamic Truck Scheduling using Estimated Times of Arrival
10

and at least one dock is available. This event facilitates the assignment of multiple trucks to docks

in consecutive epochs occurring at the same time.

States. The state 𝑠𝑘 of the process at epoch 𝑘 includes the current time, a history of ETAs, truck

arrival times as they are revealed, belief distributions on arrival times, and service start times.

Let 𝑡𝑘 ∈ [𝑡0,∞) be the time at which epoch 𝑘 occurs. Prior to truck 𝑗’s arrival, its time of arrival

𝑎 𝑗 = ? is unknown. Let 𝑢 𝑗 ∈ [𝑡0,∞) ∪ {?} be the time at which truck 𝑗 ∈ J begins service, where

𝑢 𝑗 = ? until a start time is determined. Then, the state is 𝑠𝑘 = (𝑡𝑘 , (𝑒 𝑗 (𝑡𝑘 ), 𝑎 𝑗 , 𝐹𝐴 𝑗
(𝑡𝑘 ), 𝑢 𝑗 ) 𝑗∈J ). In

initial state 𝑠0 = (𝑡0, (𝑒 𝑗 (𝑡0)), ?, 𝐹𝐴 𝑗
(𝑡0), ?) 𝑗∈J ), the current time is 𝑡0, an initial set of ETAs 𝑒 𝑗 (𝑡0)

is available for each truck, the decision maker has an initial belief distribution 𝐹𝐴 𝑗
(𝑡0) for all 𝑗 ∈ J ,

and all trucks are en route to the warehouse. A terminal state 𝑠𝐾 = (𝑡𝐾 , (𝑒 𝑗 (𝑡𝐾), 𝑎 𝑗 , 𝐹𝐴 𝑗
, 𝑢 𝑗 ) 𝑗∈J )

is any state such that 𝑎 𝑗 ≠ ? and 𝑢 𝑗 ≠ ? for all 𝑗 ∈ J , meaning all trucks have arrived and entered

service.

Actions. An action is an assignment of a truck to a dock. Trucks eligible for assignment include

trucks waiting at the warehouse and trucks that have just arrived at the warehouse. Denote the

set of docks by D = {1, . . . , 𝐷} and the service time for truck 𝑗 ∈ J by 𝑝 𝑗 . For convenience, let

J 𝑑 (𝑠𝑘 ) = { 𝑗 ∈ J : 𝑎 𝑗 = ?} be the subset of trucks still en route to the warehouse in state 𝑠𝑘 , let

J𝑤 (𝑠𝑘 ) = { 𝑗 ∈ J : 𝑎 𝑗 ≠ ?, 𝑢 𝑗 = ?} be the subset of trucks waiting at the warehouse for assignment to

a dock in state 𝑠𝑘 , let J 𝑝 (𝑠𝑘 ) = { 𝑗 ∈ J : 𝑢 𝑗 ≠ ?, 𝑢 𝑗 ≤ 𝑡𝑘 ≤ 𝑢 𝑗 + 𝑝 𝑗 } be the subset of trucks in process

in state 𝑠𝑘 , and let �̄�𝑘 (𝑠𝑘 ) = 𝐷− |J 𝑝 (𝑠𝑘 ) | be the number of available docks in state 𝑠𝑘 . Let 𝑥𝑘 𝑗 = 1 if

truck 𝑗 ∈ J𝑤 (𝑠𝑘 ) is assigned to a dock at epoch 𝑘 and 0 otherwise. When the process occupies state

𝑠𝑘 , the set of feasible actions is X(𝑠𝑘 ) = {𝑥𝑘 ∈ {0,1} |J
𝑤 (𝑠𝑘) | :

∑
𝑗∈J𝑤 (𝑠𝑘) 𝑥𝑘 𝑗 ≤ min{1, �̄�𝑘 (𝑠𝑘 )}}.

The constraint that defines the set allows at most one truck in J𝑤 (𝑠𝑘 ) to be assigned to an available

dock. If all docks are unavailable, then no assignment can be made. Setting an element of 𝑥𝑘 to

0 directs the corresponding truck to wait. Managing truck assignments this way, in one-at-a-time

fashion, reflects industry practice.

Transitions. Following action selection, the transition to the post-decision state sets service start

time to 𝑢 𝑗 = 𝑡𝑘 for the truck 𝑗 ∈ J𝑤 (𝑠𝑘 ) such that 𝑥𝑘 𝑗 = 1, if such a truck exists. All other state

components remain the same. Denote the post-decision state by 𝑠𝑥
𝑘
. The next decision epoch is

marked by a transition to state 𝑠𝑘+1 and occurs at random time 𝑡𝑘+1. Time 𝑡𝑘+1 is the time of the

event that triggers the epoch. We express 𝑡𝑘+1 as the earliest of the four trigger events outlined

above as follows: (i) Arrivals. Let �̄�𝑘 = min{𝐴 𝑗 : 𝑗 ∈ J 𝑑 (𝑠𝑥
𝑘
)} be the random variable describing

the earliest arrival time of trucks en route to the warehouse. If J 𝑑 (𝑠𝑥
𝑘
) is empty, then we set �̄�𝑘
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to ∞. (ii) Completions. Let 𝑝𝑘 = min{𝑢 𝑗 + 𝑝 𝑗 : 𝑗 ∈ J 𝑝 (𝑠𝑥
𝑘
)} be the earliest time at which a truck

finishes service. If J 𝑝 (𝑠𝑥
𝑘
) is empty, then we set 𝑝𝑘 to∞. (iii) ETAs. Let 𝑒𝑘 be the time of the next

ETA after time 𝑡𝑘 . If the set of waiting trucks J𝑤 (𝑠𝑥
𝑘
) is empty, or if the number of available docks

�̄�𝑘 (𝑠𝑥𝑘 ) is zero, then we set 𝑒𝑘 to∞. (iv) Trucks at the Yard and Available Docks. Let 𝑡𝑘 = 𝑡𝑘 be the

current time. If action 𝑥𝑘 makes no assignment, if the set of waiting trucks J𝑤 (𝑠𝑥
𝑘
) is empty, or if

the number of available docks �̄�𝑘 (𝑠𝑥𝑘 ) is zero, then we set 𝑡𝑘 to∞. Then, 𝑡𝑘+1 = min{ �̄�𝑘 , 𝑝𝑘 , 𝑒𝑘 , 𝑡𝑘 }.

Because arrival time distributions are unobserved, belief distributions characterize the uncer-

tainty surrounding �̄�𝑘 , and thus the uncertainty surrounding 𝑡𝑘+1. The transition from post-decision

state 𝑠𝑥
𝑘

to pre-decision state 𝑠𝑘+1 sets the time of epoch 𝑘 + 1 to the observed realization of 𝑡𝑘+1. If

one or more ETAs are received for truck 𝑗 between times 𝑡𝑘 and 𝑡𝑘+1, or if an ETA triggers epoch

𝑘 + 1, the set 𝑒 𝑗 (𝑡𝑘+1) is obtained by adding these ETAs to 𝑒 𝑗 (𝑡𝑘 ). Otherwise, 𝑒 𝑗 (𝑡𝑘+1) is equal to

𝑒 𝑗 (𝑡𝑘 ). Belief distributions are updated for each ETA receipt as previously described. If epoch 𝑘 +1

is triggered by the arrival of truck 𝑗 , then 𝑎 𝑗 = 𝑡𝑘+1.

Contributions. The contribution at epoch 𝑘 is the expected waiting time incurred until the next

epoch. For trucks that have arrived at the warehouse, but whose service has not yet started, this

waiting time is the expected duration of period 𝑘 , i.e., the expected time between 𝑡𝑘 and 𝑡𝑘+1. Let

𝑊𝑘 𝑗 (𝑠𝑘 , 𝑥𝑘 , 𝑡𝑘+1) =


𝑡𝑘+1 − 𝑡𝑘 , 𝑗 ∈ J𝑤 (𝑠𝑘 ) and 𝑥𝑘 𝑗 = 0,

0, otherwise,
(1)

be the random waiting time incurred by truck 𝑗 when the process occupies state 𝑠𝑘 , action 𝑥𝑘 is

selected, and the next epoch begins at random time 𝑡𝑘+1. A truck waits for the duration of period

𝑘 if it belongs to J𝑤 (𝑠𝑘 ) in state 𝑠𝑘 and action 𝑥𝑘 does not assign the truck to an available dock.

The contribution 𝑊𝑘 (𝑠𝑘 , 𝑥𝑘 ) = E[
∑
𝑗∈J𝑊𝑘 𝑗 (𝑠𝑘 , 𝑥𝑘 , 𝑡𝑘+1) |𝑠𝑘 , 𝑥𝑘 ] is the expected total waiting time

across trucks conditional on 𝑠𝑘 and 𝑥𝑘 , where the expectation is taken with respect to random time

𝑡𝑘+1.

Objective. A policy 𝜋 = (𝑋𝜋0 , . . . , 𝑋
𝜋
𝐾
) is a sequence of decision rules where each rule 𝑋𝜋

𝑘
(𝑠𝑘 ) :

𝑠𝑘→X(𝑠𝑘 ) maps the current state to a feasible action. The cost𝑊𝜋 = E[∑𝐾
𝑘=0𝑊𝑘 (𝑠𝑘 , 𝑋𝜋𝑘 (𝑠𝑘 )) |𝑠0]

of policy 𝜋 is the expected sum of contributions conditional on initial state 𝑠0. Expectation is taken

with respect to state trajectories. Denote by Π the set of all policies. The objective is to identify a

policy in Π with minimal cost:𝑊★ = min{𝑊𝜋 : 𝜋 ∈ Π}.
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4. Lookahead Policy

We use a one-step lookahead policy to select actions. The lookahead mechanism solves a determin-

istic version of the inbound truck scheduling problem. We use iterated local search (ILS) to identify

a heuristic solution to the problem. We describe the lookahead mechanism in §4.1, the policy in

§4.2, and procedures to accelerate computation in §4.3.

4.1. Lookahead

The lookahead mechanism operates on a given state 𝑠 and a given vector of arrival times �̂� =

(�̂� 𝑗 ) 𝑗∈J . For each truck 𝑗 ∈ J 𝑑 (𝑠) en route to the warehouse, the vector specifies an arrival time

�̂� 𝑗 . Otherwise, �̂� 𝑗 = 𝑎 𝑗 is the arrival time given in state 𝑠. Let 𝛾 be an ordering of the trucks in

J 𝑑 (𝑠) ∪J𝑤 (𝑠) that are either en route to the warehouse or waiting at the warehouse for assignment

to a dock. Trucks are assigned to docks as soon as possible in the sequence specified by 𝛾 and per

the arrival times �̂�. Denote the 𝑔-th truck in the order by 𝛾(𝑔). The service start time 𝑢𝛾(𝑔) for the

𝑔-th truck is the latest of the current time, the arrival time of the 𝑔-th truck, the service start time

of the previous truck in the order, and the earliest time at which a dock is available. Denote by

𝑐 𝑗 = 𝑢 𝑗 + 𝑝 𝑗 the service completion time for truck 𝑗 . Denote by 𝑡 (𝑔 − 1) the earliest time at which

one of the 𝐷 docks becomes available after the first 𝑔−1 trucks in 𝛾 are serviced. Letting max(𝐷){·}
be the 𝐷-th largest element of a set, then 𝑡 (𝑔−1) = max(𝐷){{𝑐 𝑗 : 𝑗 ∈ J 𝑝 (𝑠)}∪ {𝑐𝛾(1) , . . . , 𝑐𝛾(𝑔−1)}}
is the 𝐷-th largest service completion time among trucks in process in state 𝑠 plus the first 𝑔 − 1

trucks in order 𝛾. If the number of such trucks is less than 𝐷, then take 𝑡 (𝑔 − 1) = 𝑡 to be the time

at which the process occupies state 𝑠. Additionally, take 𝑡 (0) = max(𝐷){𝑐 𝑗 : 𝑗 ∈ J 𝑝 (𝑠)}. Then, the

service start time for the 𝑔-th truck in order 𝛾 is 𝑢𝛾(𝑔) = max{𝑡, �̂�𝛾(𝑔) , 𝑢𝛾(𝑔−1) , 𝑡 (𝑔 − 1)}.
Let �̂� (𝑠, �̂�, 𝛾) =∑|𝛾 |

𝑔=1 𝑢𝛾(𝑔) − �̂�𝛾(𝑔) be the waiting time associated with a state 𝑠, arrival times

�̂�, and an order 𝛾. Denote by Γ(𝑠) the set of all permutations of trucks in J 𝑑 (𝑠) ∪ J𝑤 (𝑠). We

use ILS (Lourenço et al. 2003) to heuristically solve the optimization problem min{�̂� (𝑠, �̂�, 𝛾) :

𝛾 ∈ Γ(𝑠)}. The ILS procedure alternates between a perturbation phase and a local search phase.

The perturbation phase diversifies the search by randomly relocating a portion of the trucks in

an order. The local search phase intensifies the search via a first-improving search across four

neighborhood structures: two-way swap, insertion, four-way swap, and insertion plus two-way

swap. These neighborhoods are similar to those explored in Maecker et al. (2023) for unrelated

parallel machine scheduling. If the ILS procedure returns an order �̂� in state 𝑠 with arrival times �̂�,

then denote the corresponding objective value by �̂� (𝑠, �̂�) = �̂� (𝑠, �̂�, �̂�). The Appendix details the

ILS procedure.
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Figure 1 Lookahead Policy
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4.2. Policy

When the process occupies state 𝑠𝑘 , a conventional one-step lookahead policy evaluates an action

𝑥𝑘 as the expected value of the lookahead mechanism across all possible states 𝑠𝑘+1 at the next

epoch. Because in our continuous-time formulation the number of such states is infinite, we instead

execute the ILS procedure across a discrete set of possible future events. We consider one event

for each truck en route to the warehouse. In the event, the truck arrives before all other trucks en

route to the warehouse and before the next service completion. We also consider the event that the

next service completion occurs before the arrival of all trucks en route to the warehouse. The cost

of an action in the lookahead policy is the expected value of the ILS solutions across these events.

Figure 1 depicts the decision rule. Using a decision tree, it shows the current state, the set of feasible

actions, and the discrete set of possible future events that comprise the one-step lookahead. The

notation used in the figure is described in the remainder of the section.

Formally, let 𝑐(𝑠𝑥
𝑘
) = min{𝑐 𝑗 : 𝑗 ∈ J 𝑝 (𝑠𝑥

𝑘
)} be the earliest completion time of trucks in service

in state 𝑠𝑥
𝑘

and let 𝑗 (𝑠𝑥
𝑘
) = arg min{𝑐 𝑗 : 𝑗 ∈ J 𝑝 (𝑠𝑥

𝑘
)} be the truck that achieves the minimum. If

J 𝑝 (𝑠𝑥
𝑘
) is empty, then take 𝑐(𝑠𝑥

𝑘
) to be∞. Denote by {𝑠𝑥

𝑘
, 𝑗} the event that the next arrival or service

completion is triggered by truck 𝑗 given that action 𝑥𝑘 is selected in state 𝑠𝑘 . If truck 𝑗 belongs

to J 𝑑 (𝑠𝑥
𝑘
), then {𝑠𝑥

𝑘
, 𝑗} = {𝐴 𝑗 < 𝐴 𝑗 ′ ∀ 𝑗 ′ ∈ J 𝑑 (𝑠𝑥

𝑘
) \ { 𝑗} and 𝐴 𝑗 < 𝑐(𝑠𝑥𝑘 ) |𝑠

𝑥
𝑘
}. If truck 𝑗 = 𝑗 (𝑠𝑥

𝑘
),

then {𝑠𝑥
𝑘
, 𝑗} = {𝐴 𝑗 ′ > 𝑐(𝑠𝑥𝑘 ) ∀ 𝑗

′ ∈ J 𝑑 (𝑠𝑥
𝑘
) |𝑠𝑥

𝑘
}. Then, E[𝐴 𝑗 |{𝑠𝑥𝑘 , 𝑗}] denotes the expected arrival

time of truck 𝑗 ∈ J 𝑑 (𝑠𝑥
𝑘
) given event {𝑠𝑥

𝑘
, 𝑗}, where expectation is taken with respect to the belief

distributions in state 𝑠𝑥
𝑘
. In our experiments, we use simulation to estimate this expected value. If

truck 𝑗 belongs to J 𝑑 (𝑠𝑥
𝑘
), then let 𝑠({𝑠𝑥

𝑘
, 𝑗}) be a state with time component 𝑡 = E[𝐴 𝑗 |{𝑠𝑥𝑘 , 𝑗}] and

all other components as in state 𝑠𝑥
𝑘
. Construct a vector of arrival times with �̂� 𝑗 = E[𝐴 𝑗 |{𝑠𝑥𝑘 , 𝑗}], with
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�̂� 𝑗 ′ = E[𝐴 𝑗 ′ |𝐴 𝑗 ′ > �̂� 𝑗 ] for all 𝑗 ′ ∈ J 𝑑 (𝑠𝑥
𝑘
) \ { 𝑗}, and with �̂� 𝑗 ′ = 𝑎 𝑗 ′ as in state 𝑠𝑥

𝑘
for all remaining

trucks 𝑗 ′ ∈ J \J 𝑑 (𝑠𝑥
𝑘
). If 𝑗 = 𝑗 (𝑠𝑥

𝑘
), then let 𝑠({𝑠𝑥

𝑘
, 𝑗}) be a state with time component 𝑡 = 𝑐(𝑠𝑥

𝑘
) and

all other components as in state 𝑠𝑥
𝑘
. Construct a vector of arrival times with �̂� 𝑗 ′ = E[𝐴 𝑗 ′ |𝐴 𝑗 ′ > 𝑐(𝑠𝑥𝑘 )]

for all 𝑗 ′ ∈ J 𝑑 (𝑠𝑥
𝑘
) and �̂� 𝑗 ′ = 𝑎 𝑗 ′ as in state 𝑠𝑥

𝑘
for all remaining trucks 𝑗 ′ ∈ J \ J 𝑑 (𝑠𝑥

𝑘
).

Denoting the one-step lookahead policy by 𝜋one, the decision rule in state 𝑠𝑘 is

𝑋
𝜋one
𝑘
(𝑠𝑘 ) = arg min

𝑥𝑘∈X(𝑠𝑘)

𝑊𝑘 (𝑠𝑘 , 𝑥𝑘 ) +
∑︁

𝑗∈J 𝑑 (𝑠𝑥
𝑘
)∪{ 𝑗 (𝑠𝑥

𝑘
)}
�̂�

(
𝑠
(
{𝑠𝑥𝑘 , 𝑗}

)
, �̂�
)
P
(
{𝑠𝑥𝑘 , 𝑗}

) . (2)

For a given action 𝑥𝑘 , the decision rule executes the ILS for each state 𝑠({𝑠𝑥
𝑘
, 𝑗}) and correspond-

ing arrival times �̂� such that 𝑗 is a truck en route to the warehouse or 𝑗 is the next truck to complete

service. Each ILS objective value is weighted by the probability P({𝑠𝑥
𝑘
, 𝑗}) of event {𝑠𝑥

𝑘
, 𝑗}, then

added to the contribution 𝑊𝑘 (𝑠𝑘 , 𝑥𝑘 ). In our experiments, these probabilities are estimated via

simulation. The decision rule returns an action that achieves the minimum value.

4.3. Computational Considerations

As problem size increases, the computation required to execute the lookahead decision rules grows.

To ease this burden, we use heuristic rules to reduce the number of actions, to limit the number of

future states, and to decrease the complexity of the ILS procedure. As we show in the Appendix,

collectively, these rules dramatically reduce computation without significant degradation of policy

quality.

We reduce the number of actions in two ways. First, when one or more docks are available

and one or more trucks are waiting at the warehouse, we disallow queuing if a truck can be

assigned and its service can be completed before the next expected arrival. This restriction is

motivated by Kanet and Sridharan (2000), who show that queuing is suboptimal in this circumstance

when arrival times are deterministic. The same result does not necessarily hold in the stochastic

and partially-observed setting of this paper, but our preliminary experiments indicate that such a

limitation reduces computation with only a nominal effect on policy quality. Denote the queuing

action by 0. It sets 𝑥𝑘 𝑗 to 0 for all 𝑗 ∈ J𝑤 (𝑠𝑘 ). We also refer to this action as the zero action.

Let 𝑝(𝑠𝑘 ) = min{𝑝 𝑗 : 𝑗 ∈ J𝑤 (𝑠𝑘 )} be the smallest service time across all trucks waiting at the

warehouse for assignment in state 𝑠𝑘 . If for each truck 𝑗 ∈ J 𝑑 (𝑠𝑘 ) en route to the warehouse its

expected arrival time E[𝐴 𝑗 ] is greater than 𝑡𝑘 + 𝑝(𝑠𝑘 ), where expectation is taken with respect to

the belief distribution in state 𝑠𝑘 , then the lookahead policy minimizes across X(𝑠𝑘 ) \ {0} instead

of X(𝑠𝑘 ) in Equation (2).
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Second, when one or more docks are available and more than two trucks are waiting at the

warehouse, we restrict the set of feasible actions to queuing, assignment of the truck with the shortest

service time, and assignment of the truck with the second shortest service time. Our preliminary

experiments indicate these are the most frequently selected actions. Ignoring other actions reduces

computation with negligible impact on solution quality. Denote by 𝑗(𝑖) the truck in J𝑤 (𝑠𝑘 ) with the

𝑖-th shortest service time 𝑝 𝑗 (𝑖) . Let X̃(𝑠𝑘 ) = {0}∪ {𝑥𝑘 ∈ X(𝑠𝑘 ) : 𝑥𝑘 𝑗 (1) = 1 or 𝑥𝑘 𝑗 (2) = 1} be the subset

of feasible actions that make no assignment, that assign truck 𝑗(1) , or that assign truck 𝑗(2) . Then,

the lookahead policy decision rules minimizes across X̃(𝑠𝑘 ) instead of X(𝑠𝑘 ) in Equation (2). If

the conditions to eliminate the queuing action are also satisfied, then the decision rules minimize

across X̃(𝑠𝑘 ) \ {0}.
We limit the number of possible future events considered in the lookahead decision rule to

states whose probabilities satisfy a threshold. This eliminates ILS executions from states that make

insignificant contributions to the expected value of the ILS solution, thereby reducing computation

with only minor effects on policy quality. Denote the threshold by 𝜙. In our experiments we set

𝜙 to 0.05. Then, in Equation (2), the summation is indexed over tucks in { 𝑗 ∈ J 𝑑 (𝑠𝑥
𝑘
) ∪ { 𝑗 (𝑠𝑥

𝑘
)} :

P({𝑠𝑥
𝑘
, 𝑗}) ≥ 𝜙} whose corresponding state likelihoods meet or exceed 𝜙 instead of over all trucks

in J 𝑑 (𝑠𝑥
𝑘
) ∪ { 𝑗 (𝑠𝑥

𝑘
)}.

We restrict the trucks on which the ILS operates to half the trucks en route to the warehouse plus

trucks waiting at the warehouse. Our preliminary experiments indicate trucks that meet this criteria

have a much higher impact on solution quality than trucks that do not. By focusing the ILS operators

on these trucks, we reduce computation without any significant loss in solution quality. Denote

by 𝑗(𝑖) the truck in J 𝑑 (𝑠) with the 𝑖-th smallest expected arrival time E[𝐴 𝑗 (𝑖) ], where expectation

is taken with respect to the belief distribution in state 𝑠. Let J̄ 𝑑 (𝑠) = { 𝑗(𝑖) ∈ J 𝑑 (𝑠) : 𝑖 ≤ ⌊𝐽/2⌋}
be the set of ⌊𝐽/2⌋ trucks in J 𝑑 (𝑠) whose expected arrival times are earliest. Then, across all

permutations in Γ(𝑠), the ILS procedure may only operate on trucks in J̄ 𝑑 (𝑠) ∪ J𝑤 (𝑠).

5. Dual Bound

Policy quality is assessed via comparison to a lower bound. We use information relaxations coupled

with an information penalty (Brown et al. 2010) to develop a dual bound on the cost of an optimal

truck scheduling policy. Information in our POMDP includes ETAs, unobserved truck arrival

time distributions, and actual truck arrival times. The dual bound works with this information via

three filtrations: natural, distribution, and perfect information. Each filtration contains the same
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information, but presents it at different times to the decision maker. Policies are selected under the

perfect information filtration, penalties utilize the distribution filtration, and the bound is evaluated

via the natural filtration.

Natural filtration F = (F0, . . . ,F𝐾) is given by the POMDP model. Each 𝜎-algebra F𝑘 is the

information known to the decision maker at the beginning of period 𝑘 . As described in §3, in

state 𝑠𝑘 this information includes ETA histories 𝑒 𝑗 (𝑡𝑘 ) plus realized arrival times 𝑎 𝑗 for each

truck 𝑗 ∈ J \ J 𝑑 (𝑠𝑘 ) already arrived to the warehouse. Distribution filtration G = (G0, . . . ,G𝐾)
reveals truck arrival time distributions to the decision maker at the beginning of the time horizon.

Thus, under each 𝜎-algebra G𝑘 , the unobserved distribution 𝐹𝐴 𝑗
is known. All other information

is presented as in the natural filtration. Perfect information filtration I = (I0, . . . ,I𝐾) reveals all

uncertainties to the decision maker at the beginning of the time horizon. In particular, in each

𝜎-algebra I𝑘 , arrival time 𝑎 𝑗 for each truck 𝑗 ∈ J is known. The distribution filtration relaxes

the natural filtration and the perfect information filtration relaxes the distribution filtration: at each

epoch 𝑘 , F𝑘 ⊆ G𝑘 ⊆ I𝑘 . Thus, the decision maker knows more in each period under filtrationG than

under filtration F and more under filtration I than under filtrations G and F.

For clarity, in this section we augment the notation for contributions, policy sets, and policy costs

to specify the associated filtration. Denote by𝑊F
𝑘
(𝑠𝑘 , 𝑥𝑘 ) = E[

∑
𝑗∈J𝑊𝑘 𝑗 (𝑠𝑘 , 𝑥𝑘 , 𝑡𝑘+1) |𝑠𝑘 , 𝑥𝑘 ,F𝑘 ] the

period-𝑘 contribution under the natural filtration, by ΠF the set of policies adapted to the natural

filtration, and by𝑊𝜋
F = E[

∑𝐾
𝑘=0𝑊

F
𝑘
(𝑠𝑘 , 𝑋𝜋𝑘 (𝑠𝑘 )) |𝑠0,F] the cost of a policy 𝜋 ∈ ΠF under the natural

filtration. In §3, these terms are introduced as 𝑊𝑘 (𝑠𝑘 , 𝑥𝑘 ), Π, and 𝑊𝜋, respectively. Analogously

define the terms𝑊G
𝑘
(𝑠𝑘 , 𝑥𝑘 ), ΠG, and𝑊𝜋

G
for the distribution filtration and𝑊 I

𝑘
(𝑠𝑘 , 𝑥𝑘 ), ΠI, and𝑊𝜋

I

for the perfect information filtration. Notice that with perfect information, because all uncertainties

are revealed, 𝑊 I
𝑘
(𝑠𝑘 , 𝑥𝑘 ) =

∑
𝑗∈J𝑊𝑘 𝑗 (𝑠𝑘 , 𝑥𝑘 , 𝑡𝑘+1) and 𝑊𝜋

I =
∑𝐾
𝑘=0

∑
𝑗∈J𝑊𝑘 𝑗 (𝑠𝑘 , 𝑋𝜋𝑘 (𝑠𝑘 ), 𝑡𝑘+1) are

deterministic quantities. Additionally, notice that ETAs may trigger decision epochs under all

filtrations.

The remainder of this section proceeds as follows. In §5.1, we analyze the distribution filtration

and identify properties that ease computation of the dual bound. In §5.2, we treat the perfect

information filtration and describe an information penalty. In §5.3, we propose a compact MILP to

compute the dual bound.

5.1. ETAs and Distributional Information

The analysis in this section plays a crucial intermediate step in deriving a dual bound. Because

the distribution filtration reveals unobserved truck arrival time distributions, estimating them via
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ETAs and belief distributions is unnecessary. We leverage this to simplify optimization under the

distribution filtration. First, we show that policies that assign trucks to docks at epochs triggered by

ETAs are suboptimal. Then, we demonstrate that epochs triggered by ETAs may be ignored. Finally,

we formulate an MDP and show that solving it is equivalent to optimizing under the distribution

filtration.

Denote by Π̄G ⊆ ΠG the subset of policies adapted to distribution filtration G whose decision

rules do not assign vehicles to docks at epochs triggered by ETAs. If epoch 𝑘 is triggered by an

ETA, then each policy �̄� ∈ Π̄G employs decision rule 𝑋 �̄�
𝑘
(𝑠𝑘 ) = 0 and makes no assignment in

associated state 𝑠𝑘 . Conversely, for each policy 𝜋 ∈ ΠG \ Π̄G, there is at least one epoch 𝑘 triggered

by an ETA such that decision rule 𝑋𝜋
𝑘
(𝑠𝑘 ) ≠ 0 assigns a truck to a dock in associated state 𝑠𝑘 . Each

policy �̄� ∈ Π̄G corresponds to a policy 𝜋 ∈ ΠG \ Π̄G as follows. Suppose policy 𝜋 assigns truck 𝑗 ′

to a dock in state 𝑠𝑘 ′ such that epoch 𝑘′ is triggered by an ETA. Then, there must exist an earlier

epoch �̄�′ such that 𝑗 ′ belongs to the set of waiting trucks J𝑤 (𝑠 �̄� ′) and the zero action 𝑋𝜋
�̄� ′
(𝑠 �̄� ′) = 0

is selected, meaning truck 𝑗 ′ was not assigned to a dock in state 𝑠 �̄� ′ , but could have been. In policy

�̄�, the assignment of all such trucks 𝑗 ′ to a dock is made in a corresponding state 𝑠 �̄� ′ instead of in

state 𝑠𝑘 ′ .

Lemma 1 asserts that the cost𝑊 �̄�
G

of policy �̄� ∈ Π̄G is no larger than the cost𝑊𝜋
G

of a corresponding

policy 𝜋 ∈ ΠG \ Π̄G. The result follows from shifting truck assignments made in epochs triggered

by ETAs to earlier epochs. Starting service sooner reduces the expected waiting time. Thus, policy

𝜋 is weakly improved by a corresponding policy �̄�.

Lemma 1 (Assignment at ETA Epochs). For policy �̄� ∈ Π̄G and a corresponding policy 𝜋 ∈ ΠG \
Π̄G,𝑊𝜋

G
≥𝑊 �̄�

G
.

Proof. Let 𝒔𝜋 = (𝑠𝜋0 , . . . , 𝑠
𝜋
𝐾
) be a sample path induced by policy 𝜋, where 𝑠𝜋0 = 𝑠0 is the initial

state. Denote by K′(𝒔𝜋) the set of all epochs along 𝒔𝜋 triggered by an ETA such that policy 𝜋

assigns a truck to a dock. Denote by 𝑗 ′ the truck assigned at epoch 𝑘′ ∈ K′(𝒔𝜋) and the action by

𝑥𝑘 ′ ( 𝑗 ′). It sets 𝑥𝑘 ′ 𝑗 ′ to 1 and 𝑥𝑘 ′ 𝑗 to 0 for all 𝑗 ∈ J𝑤 (𝑠𝑘 ′) not equal to 𝑗 ′. For each 𝑘′ ∈ K′(𝒔𝜋), there

must be an earlier non-ETA epoch �̄�′ such that truck 𝑗 ′ is at the warehouse and policy 𝜋 does not

assign a truck to a dock. The action at epoch �̄�′ is 0.

For sample path 𝒔𝜋, the corresponding sample path induced by policy �̄� is 𝒔�̄� = (𝑠�̄�0 , . . . , 𝑠
�̄�
𝐾
).

It proceeds like sample path 𝒔𝜋, but with the following changes. For each 𝑘′ ∈ K′(𝒔𝜋), move the

assignment of truck 𝑗 ′ from epoch 𝑘′ to epoch �̄�′. The action at epoch �̄�′ is 𝑥 �̄� ′ ( 𝑗 ′). It assigns truck
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𝑗 ′ to a dock in epoch �̄�′. The action at epoch 𝑘′ is 0. This shifts service start time 𝑢 𝑗 ′ from 𝑡𝑘 ′ to 𝑡 �̄� ′ .

The change is reflected in state 𝑠�̄�
�̄� ′+1 and in each subsequent state in sample path 𝒔�̄�.

Changing the service start time for truck 𝑗 ′ eliminates positive contributions due to truck 𝑗 ′ in

epochs �̄�′, . . . , 𝑘′− 1, which leads to the result. Denote by K̄′(𝒔𝜋) = {( �̄�′, . . . , 𝑘′− 1) : 𝑘′ ∈ K′(𝒔𝜋)}
the set of all epoch sequences from �̄�′ to 𝑘′− 1 for each 𝑘′ ∈ K′(𝒔𝜋). Let

𝑔(𝑘) =
∑︁

( �̄� ′,...,𝑘 ′)∈K̄′ (𝒔𝜋 )

1
{
𝑘 ∈ ( �̄�′, . . . , 𝑘′)

}
(3)

be the number of times epoch 𝑘 appears in a sequence belonging to K̄′(𝒔𝜋). Denote by 𝑊𝜋
G
(𝒔𝜋) =∑𝐾

𝑘=0𝑊
G
𝑘
(𝑠𝜋
𝑘
, 𝑋𝜋

𝑘
(𝑠𝜋
𝑘
)) the contributions accumulated by policy 𝜋 along sample path 𝒔𝜋. Define

𝑊 �̄�
G
(𝒔�̄�) analogously. Then,

𝑊𝜋
G (𝒔

𝜋) =
𝐾∑︁
𝑘=0

𝑊G𝑘
(
𝑠𝜋𝑘 , 𝑋

𝜋
𝑘

(
𝑠𝜋𝑘
) )

(4)

=

𝐾∑︁
𝑘=0
E


∑︁
𝑗∈J

𝑊𝑘 𝑗

(
𝑠𝜋𝑘 , 𝑋

𝜋
𝑘

(
𝑠𝜋𝑘
)
, 𝑡𝑘+1

) ���𝑠𝜋𝑘 , 𝑋𝜋𝑘 (𝑠𝜋𝑘 ) ,G𝑘 (5)

=

𝐾∑︁
𝑘=0
E

[ ���{ 𝑗 ∈ J𝑤
(
𝑠𝜋𝑘
)

:
(
𝑋𝜋𝑘

(
𝑠𝜋𝑘
) )
𝑘 𝑗
= 0

}��� (𝑡𝑘+1 − 𝑡𝑘 ) ���𝑠𝜋𝑘 , 𝑋𝜋𝑘 (𝑠𝜋𝑘 ) ,G𝑘 ] (6)

≥
𝐾∑︁
𝑘=0
E

[( ���{ 𝑗 ∈ J𝑤
(
𝑠𝜋𝑘
)

:
(
𝑋𝜋𝑘

(
𝑠𝜋𝑘
) )
𝑘 𝑗
= 0

}���− 𝑔(𝑘)) (𝑡𝑘+1 − 𝑡𝑘 ) ���𝑠𝜋𝑘 , 𝑋𝜋𝑘 (𝑠𝜋𝑘 ) ,G𝑘 ] (7)

=

𝐾∑︁
𝑘=0
E

[ ���{ 𝑗 ∈ J𝑤
(
𝑠�̄�𝑘
)

:
(
𝑋 �̄�𝑘

(
𝑠�̄�𝑘
) )
𝑘 𝑗
= 0

}��� (𝑡𝑘+1 − 𝑡𝑘 ) ���𝑠�̄�𝑘 , 𝑋 �̄�𝑘 (𝑠�̄�𝑘 ) ,G𝑘 ] (8)

=

𝐾∑︁
𝑘=0
E


∑︁
𝑗∈J

𝑊𝑘 𝑗

(
𝑠�̄�𝑘 , 𝑋

�̄�
𝑘

(
𝑠�̄�𝑘
)
, 𝑡𝑘+1

) ���𝑠�̄�𝑘 , 𝑋 �̄�𝑘 (𝑠�̄�𝑘 ) ,G𝑘 (9)

=

𝐾∑︁
𝑘=0

𝑊G𝑘
(
𝑠�̄�𝑘 , 𝑋

�̄�
𝑘

(
𝑠�̄�𝑘
) )

(10)

=𝑊 �̄�
G

(
𝒔�̄�
)
. (11)

Equations (5) and (9) hold by definition. Equations (6) and (8) follow from Equation (1). Equation (7)

follows from Equation (3) because, by construction, 0 ≤ 𝑔(𝑘) ≤ |{ 𝑗 ∈ J𝑤 (𝑠𝜋
𝑘
) : (𝑋𝜋

𝑘
(𝑠𝜋
𝑘
))𝑘 𝑗 = 0}|.

In epoch 𝑘 , policy �̄� reduces the number of waiting trucks by 𝑔(𝑘) relative to the number of waiting

trucks due to policy 𝜋. It follows that

𝑊𝜋
G = E

[
𝐾∑︁
𝑘=0

𝑊G𝑘
(
𝑠𝑘 , 𝑋

𝜋
𝑘 (𝑠𝑘 )

) ���𝑠0,G

]
(12)
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= E
[
𝑊𝜋
G (𝒔

𝜋)
���G] (13)

≥ E
[
𝑊 �̄�
G

(
𝒔�̄�
) ���G] (14)

= E

[
𝐾∑︁
𝑘=0

𝑊G𝑘
(
𝑠𝑘 , 𝑋

�̄�
𝑘 (𝑠𝑘 )

) ���𝑠0,G

]
(15)

=𝑊 �̄�
G. (16)

Equations (12) and (16) hold by definition. Equations (13) and (15) express the expected sum of

contributions as the expected contribution across sample paths. Equation (14) follows from two

facts. First, Equations (4)–(11) demonstrate that 𝑊𝜋
G
(𝒔𝜋) ≥ 𝑊 �̄�

G
(𝒔�̄�) for any sample path 𝒔𝜋 and

the corresponding sample path 𝒔�̄�. Second, the exogenous information (ETAs and arrival times)

is the same across the two paths, and thus they occur with the same probability. Consequently,

E[𝑊𝜋
G
(𝒔𝜋) |G] ≥ E[𝑊 �̄�

G
(𝒔�̄�) |G]. □

Beyond Lemma 1, we show that the cost of a policy in Π̄Gmay be calculated without consideration

of epochs triggered by ETAs. Define an MDP similar to the POMDP in §3, but without ETAs:

epochs are not triggered by ETAs, the state variable does not include ETA histories nor belief

distributions, the time of the next epoch is not a function of future ETAs, ETAs do not play a

role in contributions, and information unfolds according to distribution filtration G. Epochs are

triggered by truck arrivals, service completions, and trucks at the yard when docks are available.

The state 𝑠𝑘 = (𝑡𝑘 , (𝑎 𝑗 , 𝑢 𝑗 ) 𝑗∈J ) at epoch 𝑘 includes the time at which the epoch occurs, truck

arrival times, and service start times. The set of feasible actions X(𝑠𝑘 ) in state 𝑠𝑘 is the same

as the set of feasible actions in the POMDP. A transition to epoch 𝑘 + 1 occurs at random time

𝑡𝑘+1 = min{ �̄�𝑘 , 𝑝𝑘 , 𝑡𝑘 }. A transition updates arrival times and service start times as in the POMDP.

Contribution 𝑊G
𝑘
(𝑠𝑘 , 𝑥𝑘 ) = E[

∑
𝑗∈J𝑊𝑘 𝑗 (𝑠𝑘 , 𝑥𝑘 , 𝑡𝑘+1) |𝑠𝑘 , 𝑥𝑘 ,G𝑘 ] calculates expected waiting time

as a function of unobserved arrival time distributions. Denote the set of policies by Π̃G. The

cost 𝑊 �̃�
G
= E[∑𝐾

𝑘=0𝑊
G
𝑘
(𝑠𝑘 , 𝑋 �̃�𝑘 (𝑠𝑘 )) |𝑠0,G] of a policy �̃� ∈ Π̃G is the expected sum of contributions

conditional on the distribution filtration.

For each policy �̄� ∈ Π̄G, there is a corresponding policy �̃� ∈ Π̃G consisting of the decision rules

in �̄� for all states tied to epochs that are not triggered by ETAs. As we show in Lemma 2, for

any policy in Π̄G, decision rules for states tied to epochs triggered by ETAs are inconsequential.

Lemma 2 asserts that the cost �̃� �̃�
G

of policy �̃� is equal to the cost 𝑊 �̄�
G

of policy �̄�. The result

follows from the zero action selected by policy �̄� in each epoch triggered by an ETA. The proof

shows that contributions accrued at epochs triggered by ETAs are captured by excluding ETAs
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from the definition of the next epoch time 𝑡𝑘+1. Thus, instead of working with the POMDP under

the distribution filtration, we may instead work with the MDP.

Lemma 2 (Cost and ETA Epochs). For policy �̄� ∈ Π̄G and the corresponding policy �̃� ∈ Π̃G,𝑊 �̄�
G
=

𝑊 �̃�
G

.

Proof. The proof is in five parts, labeled (i)–(v). We prove four intermediate results then

the main result. Let 𝑠𝑘 and 𝑠𝑘+𝑛 be two states on a sample path induced by policy �̄� and sepa-

rated by the maximum possible number of consecutive epochs 𝑘 + 1, . . . , 𝑘 + 𝑛 − 1 triggered by

ETAs. Denote the associated history of states, actions, and information by 𝒔 = (𝑠𝑘 , 𝑋 �̄�𝑘 (𝑠𝑘 ), 𝑡𝑘+1 =
𝑒𝑘 , . . . , 𝑠𝑘+𝑛−2, 𝑋

�̄�
𝑘+𝑛−2(𝑠𝑘+𝑛−2), 𝑡𝑘+𝑛−1 = 𝑒𝑘+𝑛−2, 𝑠𝑘+𝑛−1, 𝑋

�̄�
𝑘+𝑛−1(𝑠𝑘+𝑛−1), 𝑡𝑘+𝑛 ≠ 𝑒𝑘+𝑛−1, 𝑠𝑘+𝑛), where

all epochs are triggered by ETAs except for epoch 𝑘 + 𝑛. For 𝑘 ≤ 𝑙 ≤ 𝑘 + 𝑛, denote by 𝒔(𝑙) =
(𝑠𝑘 , 𝑋 �̄�𝑘 (𝑠𝑘 ), 𝑡𝑘+1 = 𝑒𝑘 , . . . , 𝑠𝑙) the history 𝒔 through state 𝑠𝑙 . The definition of 𝒔 implies 𝑛 is chosen

such that P(𝑡𝑘+𝑛 = 𝑒𝑘+𝑛−1 |𝒔(𝑘 + 𝑛 − 1)) = 0 and P(𝑡𝑘+𝑛 ≠ 𝑒𝑘+𝑛−1 |𝒔(𝑘 + 𝑛 − 1)) = 1, meaning the

probability of an additional epoch triggered by an ETA occurring before an epoch triggered by a

different event is zero. In other words, time 𝑡𝑘+𝑛 must be determined by an event that is not an

ETA. Additionally, the definition of 𝒔 implies that arrival times (𝑎 𝑗 ) 𝑗∈J are the same in states

𝑠𝑘 , . . . , 𝑠𝑘+𝑛−1 and that service start times (𝑢 𝑗 ) 𝑗∈J are the same in states 𝑠𝑘+1, . . . , 𝑠𝑘+𝑛−1. This is

true because epochs 𝑘 + 1, . . . , 𝑘 + 𝑛− 1 are not triggered by truck arrivals and actions taken in the

associated states make no assignments.

Along history 𝒔, for 𝑙 = 𝑘 + 1, . . . , 𝑘 + 𝑛− 1, the first three intermediate results are

(i) J𝑤
(
𝑠𝑥
𝑙

)
= J𝑤

(
𝑠𝑥
𝑘

)
(ii) E


∑︁
𝑗∈J

𝑊𝑙, 𝑗

(
𝑠𝑙 , 𝑋

�̄�
𝑙
(𝑠𝑙), 𝑡𝑙+1

) ���𝒔(𝑙), 𝑋 �̄�
𝑙
(𝑠𝑙),G𝑙

 = E


∑︁
𝑗∈J𝑤 (𝑠𝑥

𝑘
)
𝑡𝑙+1 − 𝑒𝑙−1

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑙


(iii) E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
𝑡𝑙+1 − 𝑒𝑙−1

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘), 𝑡𝑙+1 ≠ 𝑒𝑙 ,G𝑙

 = E


∑︁
𝑗∈J𝑤 (𝑠𝑥

𝑘
)
min

{
�̄�𝑘 , 𝑝𝑘 , 𝑡𝑘

}
− 𝑒𝑙−1

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑙

 .
Proof of Part (i). Epoch 𝑘 + 1 is triggered by an ETA at time 𝑡𝑘+1 = 𝑒𝑘 . Consequently, epoch

𝑘 + 1 does not signal the arrival of a truck, and thus the set of trucks J𝑤 (𝑠𝑘+1) waiting at the

warehouse in state 𝑠𝑘+1 is equal to the set of trucksJ𝑤 (𝑠𝑥
𝑘
) waiting at the warehouse in post-decision

state 𝑠𝑥
𝑘
. Further, because 𝑋 �̄�

𝑘+1(𝑠𝑘+1) = 0 makes no assignment, the set of waiting trucks does not

change. Thus, J𝑤 (𝑠𝑥
𝑘+1) = J

𝑤 (𝑠𝑥
𝑘
). Similarly, each subsequent epoch 𝑙 = 𝑘 + 2, . . . , 𝑘 + 𝑛 − 1 is

triggered by an ETA at time 𝑡𝑙 = 𝑒𝑙−1 and the zero action 𝑋 �̄�
𝑙
(𝑠𝑙) = 0 is selected. Because these
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events and actions do not change the set of trucks waiting at the warehouse, J𝑤 (𝑠𝑥
𝑙
) = J𝑤 (𝑠𝑥

𝑘
) for

𝑙 = 𝑘 + 1, . . . , 𝑘 + 𝑛− 1.

Proof of Part (ii). Per Equation (1), the contribution is zero for any truck 𝑗 ∈ J𝑤 (𝑠𝑘 ) such that

𝑥𝑙 𝑗 is not equal to zero. Equivalently, per the definitions of J𝑤 (·) and the post-decision state, the

contribution of any truck not belonging to J𝑤 (𝑠𝑥
𝑙
) is zero. Thus, summation over the trucks in J is

equivalent to summation over the trucks in J𝑤 (𝑠𝑥
𝑙
). Summation across J𝑤 (𝑠𝑥

𝑙
) = J𝑤 (𝑠𝑥

𝑘
) follows

from part (i). To understand the change in condition and value, notice that after action 𝑋 �̄�
𝑘
(𝑠𝑘 ) is

selected in state 𝑠𝑘 , subsequent actions and information in history 𝒔 do not result in any changes to

the state variable that effect expected contributions. Because the zero action makes no assignment,

per the transition function, it has no effect on the state variable. Further, under distribution filtration

G, the decision maker knows unobserved truck arrival time distributions. Thus, even though ETA

histories and belief distributions are different across each state in the history, they do not impact

the expectation, which is a function of the unobserved distributions. Finally, the times 𝑡𝑘 and

𝑡𝑙 = 𝑒𝑙−1 at which the process occupies states 𝑠𝑘 and 𝑠𝑙 , respectively, are different. However, this is

accounted for in the value 𝑡𝑙+1 − 𝑒𝑙−1, which follows from Equation (1) and the condition on 𝒔(𝑙).
Thus, conditioning on 𝑠𝑘 and 𝑋 �̄�

𝑘
(𝑠𝑘 ) plus setting 𝑡𝑙 = 𝑒𝑙−1 result in the same expected value as

conditioning on 𝒔(𝑙) and 𝑋 �̄�
𝑙
(𝑠𝑙) = 0.

Proof of Part (iii). Per the condition 𝑡𝑙+1 ≠ 𝑒𝑙 , 𝑡𝑙+1 = min{ �̄�𝑙 , 𝑝𝑙 , 𝑡𝑙}. Because epochs 𝑘 + 1, . . . , 𝑙

in history 𝒔 are triggered by ETAs, and because the zero actions selected in these periods make no

assignments, �̄�𝑙 = �̄�𝑘 , 𝑝𝑙 = 𝑝𝑘 , and 𝑡𝑙 = 𝑡𝑘 . Thus, 𝑡𝑙+1 = min{ �̄�𝑘 , 𝑝𝑘 , 𝑡𝑘 }.
The fourth intermediate result is

(iv) E

[
𝑘+𝑛−1∑︁
𝑙=𝑘

𝑊G
𝑙

(
𝑠𝑙 , 𝑋

�̄�
𝑙
(𝑠𝑙)

) ���𝑠𝑘 ,G] = E 
∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
min

{
�̄�𝑘 , 𝑝𝑘 , 𝑡𝑘

}
− 𝑡𝑘

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘

 .
Proof of Part (iv).

E

[
𝑘+𝑛−1∑︁
𝑙=𝑘

𝑊G
𝑙

(
𝑠𝑙 , 𝑋

�̄�
𝑙
(𝑠𝑙)

) ���𝑠𝑘 ,G]
= E


𝑘+𝑛−1∑︁
𝑙=𝑘

E


∑︁
𝑗∈J

𝑊𝑙 𝑗

(
𝑠𝑙 , 𝑋

�̄�
𝑙
(𝑠𝑙), 𝑡𝑙+1

) ���𝒔(𝑙), 𝑋 �̄�
𝑙
(𝑠𝑙),G𝑙


���𝑠𝑘 ,G (17)

= E

E


∑︁
𝑗∈J𝑤 (𝑠𝑥

𝑘
)
𝑡𝑘+1 − 𝑡𝑘

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘

 +
𝑘+𝑛−1∑︁
𝑙=𝑘+1

E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
𝑡𝑙+1 − 𝑒𝑙−1

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑙


���𝑠𝑘 ,G (18)

= E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
𝑡𝑘+1 − 𝑡𝑘

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘

 +
𝑘+𝑛−1∑︁
𝑙=𝑘+1

E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
𝑡𝑙+1 − 𝑒𝑙−1

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑙


𝑙∏

𝑔=𝑘+1
P
(
𝑡𝑔 = 𝑒𝑔−1 |𝒔(𝑔 − 1)

)
(19)
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= E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
𝑡𝑘+1 − 𝑡𝑘

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘), 𝑡𝑘+1 = 𝑒𝑘 ,G𝑘

 P (𝑡𝑘+1 = 𝑒𝑘 |𝑠𝑘)
+E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
𝑡𝑘+1 − 𝑡𝑘

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘), 𝑡𝑘+1 ≠ 𝑒𝑘 ,G𝑘

 P (𝑡𝑘+1 ≠ 𝑒𝑘 |𝑠𝑘)
+
𝑘+𝑛−1∑︁
𝑙=𝑘+1

E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
𝑡𝑙+1 − 𝑒𝑙−1

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘), 𝑡𝑙+1 = 𝑒𝑙 ,G𝑙

 P (𝑡𝑙+1 = 𝑒𝑙 |𝒔(𝑙))
𝑙∏

𝑔=𝑘+1
P
(
𝑡𝑔 = 𝑒𝑔−1 |𝒔(𝑔 − 1)

)
+
𝑘+𝑛−1∑︁
𝑙=𝑘+1

E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
𝑡𝑙+1 − 𝑒𝑙−1

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘), 𝑡𝑙+1 ≠ 𝑒𝑙 ,G𝑙

 P (𝑡𝑙+1 ≠ 𝑒𝑙 |𝒔(𝑙))
𝑙∏

𝑔=𝑘+1
P
(
𝑡𝑔 = 𝑒𝑔−1 |𝒔(𝑔 − 1)

)
(20)

= E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
𝑒𝑘 − 𝑡𝑘

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘

 P (𝑡𝑘+1 = 𝑒𝑘 |𝑠𝑘)
+E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
min

{
�̄�𝑘 , 𝑝𝑘 , 𝑡𝑘

}
− 𝑡𝑘

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘

 P (𝑡𝑘+1 ≠ 𝑒𝑘 |𝑠𝑘)
+
𝑘+𝑛−2∑︁
𝑙=𝑘+1

E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
𝑒𝑙 − 𝑒𝑙−1

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑙

 P (𝑡𝑙+1 = 𝑒𝑙 |𝒔(𝑙))
𝑙∏

𝑔=𝑘+1
P
(
𝑡𝑔 = 𝑒𝑔−1 |𝒔(𝑔 − 1)

)
+
𝑘+𝑛−2∑︁
𝑙=𝑘+1

E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
min

{
�̄�𝑘 , 𝑝𝑘 , 𝑡𝑘

}
− 𝑒𝑙−1

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑙

 P (𝑡𝑙+1 ≠ 𝑒𝑙 |𝒔(𝑙))
𝑙∏

𝑔=𝑘+1
P
(
𝑡𝑔 = 𝑒𝑔−1 |𝒔(𝑔 − 1)

)
+E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
min

{
�̄�𝑘 , 𝑝𝑘 , 𝑡𝑘

}
− 𝑒𝑘+𝑛−2

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘+𝑛−1


· P (𝑡𝑘+𝑛−1 = 𝑒𝑘+𝑛−2 |𝒔(𝑘 + 𝑛− 2))

𝑘+𝑛−2∏
𝑔=𝑘+1

P
(
𝑡𝑔 = 𝑒𝑔−1 |𝒔(𝑔 − 1)

)
(21)

= E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
min

{
�̄�𝑘 , 𝑝𝑘 , 𝑡𝑘

}
− 𝑡𝑘

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘

 . (22)

Equation (17) holds by definition. Per the transition function, conditioning on history 𝒔(𝑙) in the

inner expectation is equivalent to conditioning on state 𝑠𝑙 . Equation (18) follows from part (ii).

Equation (19) calculates the outer expectation conditional on distribution filtration G and on each

epoch subsequent to 𝑘 being triggered by an ETA, or equivalently, the history 𝒔(𝑙). Equation (20)

holds by the law of total expectation. Equation (21) holds by part (iii), the conditions on 𝑡𝑙+1, the

assumption that P(𝑡𝑘+𝑛 = 𝑒𝑘+𝑛−1 |𝒔(𝑘 + 𝑛 − 1)) = 0, and the assumption that P(𝑡𝑘+𝑛 ≠ 𝑒𝑘+𝑛−1 |𝒔(𝑘 +
𝑛−1)) = 1. Equation (22) is obtained by manipulating Equation (21) as follows. Combine the terms

in one period with the terms in the previous period. Begin with periods 𝑘 + 𝑛− 1 and 𝑘 + 𝑛− 2:

E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
min

{
�̄�𝑘 , 𝑝𝑘 , 𝑡𝑘

}
− 𝑒𝑘+𝑛−2

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘+𝑛−1


· P (𝑡𝑘+𝑛−1 = 𝑒𝑘+𝑛−2 |𝒔(𝑘 + 𝑛− 2))

𝑘+𝑛−2∏
𝑔=𝑘+1

P
(
𝑡𝑔 = 𝑒𝑔−1 |𝒔(𝑔 − 1)

)
(23)
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+E


∑︁
𝑗∈J𝑤 (𝑠𝑥

𝑘
)
min

{
�̄�𝑘 , 𝑝𝑘 , 𝑡𝑘

}
− 𝑒𝑘+𝑛−3

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘+𝑛−2


· P (𝑡𝑘+𝑛−1 ≠ 𝑒𝑘+𝑛−2 |𝒔(𝑘 + 𝑛− 2))

𝑘+𝑛−2∏
𝑔=𝑘+1

P
(
𝑡𝑔 = 𝑒𝑔−1 |𝒔(𝑔 − 1)

)
(24)

+E


∑︁
𝑗∈J𝑤 (𝑠𝑥

𝑘
)
𝑒𝑘+𝑛−2 − 𝑒𝑘+𝑛−3

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘+𝑛−2


· P (𝑡𝑘+𝑛−1 = 𝑒𝑘+𝑛−2 |𝒔(𝑘 + 𝑛− 2))

𝑘+𝑛−2∏
𝑔=𝑘+1

P
(
𝑡𝑔 = 𝑒𝑔−1 |𝒔(𝑔 − 1)

)
(25)

= E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
min

{
�̄�𝑘 , 𝑝𝑘 , 𝑡𝑘

}
− 𝑒𝑘+𝑛−3

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘+𝑛−2


𝑘+𝑛−2∏
𝑔=𝑘+1

P
(
𝑡𝑔 = 𝑒𝑔−1 |𝒔(𝑔 − 1)

)
. (26)

The expectations in Equations (23) and (25) are the same whether conditioned on G𝑘+𝑛−2 or

G𝑘+𝑛−1. Thus, the terms may be combined to eliminate 𝑒𝑘+𝑛−2 and the resulting expectation may

be conditioned on G𝑘+𝑛−2. Factoring the common terms with Equation (24) leaves P(𝑡𝑘+𝑛−1 =

𝑒𝑘+𝑛−2 |𝒔(𝑘 + 𝑛− 2)) + P(𝑡𝑘+𝑛−1 ≠ 𝑒𝑘+𝑛−2 |𝒔(𝑘 + 𝑛− 2)) = 1, which yields Equation (26). Proceeding

backwards in the this fashion eventually reduces Equation (21) to

E


∑︁

𝑗∈J𝑤 (𝑠𝑥
𝑘
)
min

{
�̄�𝑘 , 𝑝𝑘 , 𝑡𝑘

}
− 𝑒𝑘

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘+1

 P (𝑡𝑘+1 = 𝑒𝑘 |𝑠𝑘) (27)

+E


∑︁
𝑗∈J𝑤 (𝑠𝑥

𝑘
)
min

{
�̄�𝑘 , 𝑝𝑘 , 𝑡𝑘

}
− 𝑡𝑘

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘

 P (𝑡𝑘+1 ≠ 𝑒𝑘 |𝑠𝑘) (28)

+E


∑︁
𝑗∈J𝑤 (𝑠𝑥

𝑘
)
𝑒𝑘 − 𝑡𝑘

���𝑠𝑘 , 𝑋 �̄�
𝑘
(𝑠𝑘),G𝑘

 P (𝑡𝑘+1 = 𝑒𝑘 |𝑠𝑘) . (29)

Combining the terms in Equations (27)-(29) in the same way as the terms in Equations (23)-(25)

yields Equation (22).

Part (v). Part (iv) establishes that the expected sum of contributions up until the first epoch

after 𝑘 not triggered by an ETA is equal to the expected time elapsed across waiting trucks until

the first epoch after 𝑘 not triggered by an ETA. Thus, if the POMDP model under distribution

filtration G is modified to exclude epochs triggered by ETAs and to calculate contributions via

𝑡𝑘+1 = min{ �̄�𝑘 , 𝑝𝑘 , 𝑡𝑘 } instead of 𝑡𝑘+1 = min{ �̄�𝑘 , 𝑒𝑘 , 𝑝𝑘 , 𝑡𝑘 }, then the cost of policy �̄� is unchanged.

Because the MDP model triggers epochs and calculates contributions in exactly this way, the cost

of the corresponding policy �̃� is the same:𝑊 �̄�
G
=𝑊 �̃�

G
. □

The primary result of this section shows that optimization via the POMDP under the distribution

filtration is equivalent to optimization via the MDP. Denote by𝑊★
G
= min{𝑊𝜋

G
: 𝜋 ∈ ΠG} the cost of
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an optimal POMDP policy under filtrationG and by �̃�★
G
= min{𝑊 �̃�

G
: �̃� ∈ Π̃G} the cost of an optimal

MDP policy. Proposition 1 asserts that𝑊★
G

equals �̃�★
G

. The result follows directly from Lemmas 1

and 2. Proposition 1 is a crucial intermediate step to obtaining a dual bound. Equivalence of the

MDP and the POMDP under the distribution filtration allows us to substitute one model for the

other. Switching models permits the exclusion of epochs triggered by ETAs. Because such epochs

are action-dependent, disregarding them eases computation.

Proposition 1 (MDP). 𝑊★
G
= �̃�★

G
.

Proof.

𝑊★
G = min

{
𝑊𝜋
G : 𝜋 ∈ ΠG

}
(30)

= min
{
𝑊𝜋
G : 𝜋 ∈

{
ΠG \ Π̄G

}
∪ Π̄G

}
(31)

= min
{
𝑊 �̄�
G : �̄� ∈ Π̄G

}
(32)

= min
{
𝑊 �̃�
G : �̃� ∈ Π̃G

}
(33)

= �̃�★
G. (34)

Equations (30) and (34) follow from definitions. Equation (31) partitions the policy space. Equa-

tion (32) follows from Lemma 1. For every policy 𝜋 ∈ ΠG \ Π̄G, there is a corresponding policy

�̄� ∈ Π̄G such that 𝑊𝜋
G
≥ 𝑊 �̄�

G
. Thus, a minimizer must exist in Π̄G. Equation (33) follows from

Lemma 2. For every �̄� ∈ Π̄G, the corresponding �̃� ∈ Π̃G has the same cost. Thus, minimizing across

policies in Π̄G yields a policy with the same cost as minimizing across Π̃G. □

5.2. Deriving the Bound

The dual bound allows the decision maker to select a policy under perfect information filtration

I in response to any trajectory in natural filtration F, but requires that contributions be accrued

per distribution filtration G. The bound penalizes the perfect-information contribution function

𝑊 I
𝑘
(𝑠𝑘 , 𝑥𝑘 ) in each period. We follow the template for information penalties proposed by Brown

et al. (2010). Their work points to penalties that approximate the value of using knowledge about

the future. Such penalties discourage clairvoyant decisions in the present. Our approximation is

the contribution function evaluated under the perfect information filtration less the contribution

function evaluated under the distribution filtration:𝑊 I
𝑘
(𝑠𝑘 , 𝑥𝑘 ) −𝑊G𝑘 (𝑠𝑘 , 𝑥𝑘 ). Subtracting the penalty

and canceling terms yields𝑊 I
𝑘
(𝑠𝑘 , 𝑥𝑘 ) − (𝑊 I𝑘 (𝑠𝑘 , 𝑥𝑘 ) −𝑊

G
𝑘
(𝑠𝑘 , 𝑥𝑘 )) =𝑊G𝑘 (𝑠𝑘 , 𝑥𝑘 ). The result is the

contribution function evaluated under filtration G instead of filtration I. Even though the bound
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permits action selection with full foresight, the penalized period-𝑘 contribution incurs waiting time

as if the immediate future is uncertain. This penalty is similar to the smoothing penalty used in

Brown and Smith (2022).

Notice that 𝑊 I
𝑘
(𝑠𝑘 , 𝑥𝑘 ) −𝑊F𝑘 (𝑠𝑘 , 𝑥𝑘 ) is also a valid penalty. Using the natural filtration and the

POMDP state variable satisfies the requirements of Brown et al. (2010) and works with the analysis

below. However, penalizing via the distribution filtration allows us to work with MDP contributions

instead of with POMDP contributions, and therefore to ignore decision epochs triggered by ETAs.

Because the occurrence and timing of such epochs are policy-dependent, removing them from

consideration markedly simplifies the optimization. This advantage facilitates the MILP presented

in the subsequent section.

Denote a realization of truck arrival times in the natural filtration by 𝑎 = (𝑎 𝑗 ) 𝑗∈J . Denote by Π̃I

the MDP policy set adapted to the perfect information filtration. Applying the penalty across all

epochs and optimizing across Π̃I leads to penalized problem

𝑓 (𝑎) = min
�̃�∈Π̃I

{
𝐾∑︁
𝑘=0

𝑊G𝑘

(
𝑠𝑘 , 𝑋

�̃�
𝑘 (𝑠𝑘 )

)}
. (35)

The quantity 𝑓 (𝑎) is the minimum cost of a policy in Π̃I chosen with full knowledge of truck arrival

times 𝑎, but with waiting times accrued as if the time of the next epoch is governed by distribution

filtration G. In other words, the penalty negates the benefit of knowing how future truck arrival

times determine the time of the next epoch, which in turn negates the benefit of knowing the waiting

time in the current period.

Denote by 𝑊★
P = E[ 𝑓 (𝑎) |F] the expected value of penalized problem 𝑓 (𝑎) under the natural

filtration. Proposition 2 asserts that 𝑊★
P is a lower bound on the cost 𝑊★ of an optimal policy for

the POMDP. The result follows from Proposition 1 and the theory of information relaxations and

duality (Brown et al. 2010). The proof of Proposition 2 shows that 𝑊★ ≥ E[�̃�★
G
|F] ≥𝑊★

P . Thus,

the expected value of an optimal MDP policy sits between the cost of an optimal POMDP policy

and the expected value of the penalized problem. Consequently, any gap between𝑊★
P and the cost

of a candidate POMDP policy is due to the suboptimality of the policy, the additional cost of

partial observability relative to the MDP, a loose bound, or some combination of these factors.

Our computational experiments indicate, however, that 𝑊★
P is often tight, in the sense that it is

approximately equal to E[�̃�★
G
|F].

Proposition 2 (Dual Bound). 𝑊★ ≥𝑊★
P .
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Proof.

𝑊★ = min
𝜋∈ΠF
E

[
𝐾∑︁
𝑘=0

𝑊F𝑘
(
𝑠𝑘 , 𝑋

𝜋
𝑘 (𝑠𝑘 )

) ���𝑠0,F

]
(36)

≥ E
[

min
𝜋∈ΠG
E

[
𝐾∑︁
𝑘=0

𝑊G𝑘
(
𝑠𝑘 , 𝑋

𝜋
𝑘 (𝑠𝑘 )

) ���𝑠0,G

] ���F] (37)

= E
[
𝑊★
G

��F] (38)

= E
[
�̃�★
G

��F] (39)

= E

[
min
�̃�∈Π̃G
E

[
𝐾∑︁
𝑘=0

𝑊G𝑘

(
𝑠𝑘 , 𝑋

�̃�
𝑘 (𝑠𝑘 )

) ���𝑠0,G

] ���F] (40)

≥ E
[
min
�̃�∈Π̃I

{
𝐾∑︁
𝑘=0

𝑊 I𝑘

(
𝑠𝑘 , 𝑋

�̃�
𝑘 (𝑠𝑘 )

)
−
(
𝑊 I𝑘

(
𝑠𝑘 , 𝑋

�̃�
𝑘 (𝑠𝑘 )

)
−𝑊G𝑘

(
𝑠𝑘 , 𝑋

�̃�
𝑘 (𝑠𝑘 )

) )} ���F] (41)

= E

[
min
�̃�∈Π̃I

{
𝐾∑︁
𝑘=0

𝑊G𝑘

(
𝑠𝑘 , 𝑋

�̃�
𝑘 (𝑠𝑘 )

)} ���F] (42)

= E
[
𝑓 (𝑎)

���F] (43)

=𝑊★
P . (44)

Equations (36), (38), (40), (43), and (44) hold by definition. Equation (37) follows from Lemma

2.1 of Brown et al. (2010) because distribution filtration G relaxes natural filtration F and the zero

penalty is dual feasible. Equation (39) follows from Proposition 1 because for every trajectory of

states in the natural filtration, 𝑊★
G
= �̃�★

G
. The inequality in Equation (41) holds by Lemma 2.1 and

Proposition 2.2 of Brown et al. (2010): perfect information filtration I relaxes distribution filtration

G and the penalty is dual feasible when the contribution function is taken to be the generating

function. Equation (42) cancels terms. □

5.3. Solving the Penalized Problem

This section focuses on solving the penalized problem. In contrast to the POMDP, which models

dynamic decisions in the face of unobserved uncertainties, the penalized problem is all but deter-

ministic. Although each period’s contribution is accrued in expectation, because all information is

revealed at the beginning of the time horizon, decisions across epochs can be made concurrently

instead of in sequence. Thus, the penalized problem is primarily a combinatorial optimization task

and can be approached through the lens of mathematical programming. We begin this section with

an alternative dynamic program formulation. Then, using simulation to estimate the contribution,
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we formulate a sample average approximation of the alternative dynamic program. Finally, we

model the sample average approximation as a MILP.

The purpose of the alternative dynamic program formulation of the penalized problem is to state

the optimization in a form that is more amenable to representation as a MILP. The alternative

formulation consolidates assignments made in consecutive epochs at the same time to a single

epoch. In other words, it replaces sequences of single-truck assignments to docks by one assignment

of multiple trucks to multiple docks. To accomplish this, the alternative formulation removes epochs

triggered by the assignment of a truck to a dock when at least one truck is in the yard and at least

one dock is available. In §3, such epochs are labeled as event (iv). For brevity, we refer to these

epochs as back-to-back epochs. The alternative formulation also relaxes the action space to permit

assignment of trucks up to the number of available docks.

Formally, epochs are triggered by truck arrivals and service completions. There are 2𝐽 epochs

0, . . . , 𝐾 = 2𝐽 −1, one for each truck’s arrival and another for its service completion. The state 𝑠𝑘 =

(𝑡𝑘 , (𝑎 𝑗 , 𝑢 𝑗 ) 𝑗∈J ) at epoch 𝑘 includes the time at which the epoch occurs, known truck arrival times,

and service start times. The set of feasible actions X̂(𝑠𝑘 ) = {𝑥𝑘 ∈ {0,1} |J
𝑤 (𝑠𝑘) | :

∑
𝑗∈J𝑤 (𝑠𝑘) 𝑥𝑘 𝑗 ≤

�̄�𝑘 (𝑠𝑘 )} in state 𝑠𝑘 consists of all possible assignments of trucks at the yard to available docks.

Epoch 𝑘 + 1 occurs at time 𝑡𝑘+1 = min{ �̄�𝑘 , 𝑝𝑘 }, the smaller of the next truck arrival time and the

next service completion time. As in the original formulation of the penalized problem, the time

of the next epoch is random with respect to contributions and known for the purpose of decision

making. Contribution 𝑊G
𝑘
(𝑠𝑘 , 𝑥𝑘 ) = E[

∑
𝑗∈J𝑊𝑘 𝑗 (𝑠𝑘 , 𝑥𝑘 , 𝑡𝑘+1) |𝑠𝑘 , 𝑥𝑘 ,G𝑘 ] is the expected waiting

time conditional on the distribution filtration. The transition sets service start time 𝑢 𝑗 = 𝑡𝑘 for

each truck 𝑗 ∈ J𝑤 (𝑠𝑘 ) such that 𝑥𝑘 𝑗 = 1. Denote the set of policies by Π̂I. Then, the alternative

formulation of the penalized problem is

ℎ(𝑎) = min
�̂�∈Π̂I

{
𝐾∑︁
𝑘=0

𝑊G𝑘

(
𝑠𝑘 , 𝑋

�̂�
𝑘 (𝑠𝑘 )

)}
. (45)

For each policy �̃� ∈ Π̃I, there is a corresponding policy �̂� ∈ Π̂I. States tied to back-to-back

epochs do not exist in the alternative formulation. The actions taken by policy �̃� in these states are

consolidated into a single action taken by policy �̂�. Let 𝑠𝑘+1, . . . , 𝑠𝑘+𝑛 be a sequence of 𝑛 such states

induced by policy �̃�. Let 𝑠𝑘 be the preceding state and denote by 𝑠𝑘 = 𝑠𝑘 the same state induced

by policy �̂�. The action 𝑋 �̂�
𝑘
(𝑠𝑘 ) =

∑𝑘+𝑛
𝑙=𝑘 𝑋

�̃�
𝑙
(𝑠𝑙) taken by policy �̂� in state 𝑠𝑘 is the component-wise

sum of the actions taken by policy �̃� across states 𝑠𝑘 , . . . , 𝑠𝑘+𝑛. In all other states, the decision rules

in policy �̂� are the same as the decision rules in policy �̃�.



Cubillos et al: Dynamic Truck Scheduling using Estimated Times of Arrival
28

Proposition 3 asserts that the cost ℎ(𝑎) of an optimal policy in the alternative formulation is

equal to the cost 𝑓 (𝑎) of an optimal policy in the original formulation. The result follows from

the construction of the consolidated action and the fact that zero expected time elapses between

back-to-back epochs. Proposition 3 facilitates the transition to a MILP by reducing the number of

epoch triggers in exchange for a larger action space. Although the reformulated action space is

combinatorial, this is naturally captured in the MILP.

Proposition 3 (Back-to-Back Epochs). ℎ(𝑎) = 𝑓 (𝑎).

Proof. Consider a policy �̃� ∈ Π̃I and the corresponding policy �̂� ∈ Π̂I. Let 𝑠𝑘+1, . . . , 𝑠𝑘+𝑛 be a

sequence of states induced by policy �̃� such that the associated epochs are back-to-back epochs.

Let 𝑠𝑘 be the preceding state and denote by 𝑠𝑘 = 𝑠𝑘 the same state induced by policy �̂�. The proof

is in three parts, labeled (i)–(iii).

Part (i). For 𝑙 = 𝑘, . . . , 𝑘 + 𝑛− 1,

𝑊G𝑙

(
𝑠𝑙 , 𝑋

�̃�
𝑙 (𝑠𝑙)

)
= E


∑︁
𝑗∈J

𝑊𝑙 𝑗

(
𝑠𝑙 , 𝑋

�̃�
𝑙 (𝑠𝑙) , 𝑡𝑙+1

) ���𝑠𝑙 , 𝑋 �̃�𝑙 (𝑠𝑙) ,G𝑙 (46)

= E


∑︁
𝑗∈J
(𝑡𝑙+1 − 𝑡𝑙) 1

{
𝑗 ∈ J𝑤 (𝑠𝑙) and

(
𝑋 �̃�𝑙 (𝑠𝑙)

)
𝑙 𝑗
= 0

} ���𝑠𝑙 , 𝑋 �̃�𝑙 (𝑠𝑙) ,G𝑙 (47)

= 0. (48)

Equations (46) and (47) hold by definition of the contribution. Because states 𝑠𝑘+1, . . . , 𝑠𝑘 are

triggered by back-to-back epochs, then by the transition function, 𝑡𝑚 = 𝑡𝑘 for 𝑚 = 𝑘 + 1, . . . , 𝑘 + 𝑛.
Consequently, the difference 𝑡𝑙+1 − 𝑡𝑙 in Equation (47) is zero. This establishes Equation (48).

Part (ii).

𝑘+𝑛∑︁
𝑙=𝑘

𝑊G𝑙

(
𝑠𝑙 , 𝑋

�̃�
𝑙 (𝑠𝑙)

)
=𝑊G𝑘+𝑛

(
𝑠𝑘+𝑛, 𝑋

�̃�
𝑘+𝑛 (𝑠𝑘+𝑛)

)
(49)

=𝑊G𝑘

(
𝑠𝑘 , 𝑋

�̂�
𝑘 (𝑠𝑘 )

)
. (50)

Equation (49) holds by part (i). Equation (50) follows from two facts. First, post-decision states 𝑠𝑥
𝑘+𝑛

and 𝑠𝑥
𝑘

are the same. To see this, check each component of the state variable. As shown in part (i),

𝑡𝑘+𝑛 = 𝑡𝑘 . Further, by assumption, 𝑡𝑘 = 𝑡𝑘 . Thus, 𝑡𝑘+𝑛 = 𝑡𝑘 . Because the transition to the post-decision

state does not modify the time component of the state variable, these quantities remain equal in the

post-decision state. Because truck arrival times are known from the beginning of the time horizon,
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𝑎 is the same in both states. Finally, via the construction of action 𝑋 �̂�
𝑘
(𝑠𝑘 ) =

∑𝑘+𝑛
𝑙=𝑘 𝑋

�̃�
𝑙
(𝑠𝑙), both

formulations assign the same trucks to start service at the same time. Thus, the vector of service start

times (𝑢 𝑗 ) 𝑗∈J in each post-decision state is the same. Second, the time 𝑡𝑘+𝑛+1 of the next epoch in

the original formulation is the same as the time 𝑡𝑘+1 of the next epoch in the alternative formulation.

To see this, notice that �̄�𝑘 = �̄�𝑘+𝑛. This is true because, by assumption, epochs 𝑘 + 1, . . . , 𝑘 + 𝑛
are not triggered by truck arrivals. Further, because 𝑠𝑥

𝑘+𝑛 = 𝑠
𝑥
𝑘
, it follows that 𝑝𝑘+𝑛 in the original

formulation is the same as 𝑝𝑘 in the alternative formulation. Finally, by assumption, 𝑡𝑘+𝑛 is greater

than or equal to �̄�𝑘+𝑛 and 𝑝𝑘+𝑛. Thus, 𝑡𝑘+𝑛+1 = min{ �̄�𝑘+𝑛, 𝑝𝑘+𝑛, 𝑡𝑘+𝑛} = min{ �̄�𝑘+𝑛, 𝑝𝑘+𝑛}, which is

equal to 𝑡𝑘+1 = min{ �̄�𝑘 , 𝑝𝑘 }. These two facts establish Equation (50).

Part (iii). Notice that action 𝑋 �̂�
𝑘
(𝑠𝑘 ) belongs to X̂(𝑠𝑘 ) by construction. The number of trucks

assigned to docks in the original formulation is
∑𝑘+𝑛
𝑙=𝑘

∑
𝑗∈J𝑤 (𝑠𝑙) (𝑋 �̃�𝑙 (𝑠𝑙))𝑙 𝑗 . Because each action

is feasible in the original formulation, this number of trucks must be less than or equal to the

sum of available docks
∑𝑘+𝑛
𝑙=𝑘 �̄� 𝑙 (𝑠𝑙), which, per the transition function and by the assumption of

back-to-back epochs is the same as �̄�𝑘 (𝑠𝑘 ). Thus, 𝑋 �̂�
𝑘
(𝑠𝑘 ) is feasible in the alternative formulation.

Then, it follows from part (ii) that any sequence of states 𝑠𝑘 , . . . , 𝑠𝑘+𝑛 in the original formulation,

along with the associated actions 𝑋 �̃�
𝑘
(𝑠𝑘 ), . . . , 𝑋 �̃�𝑘+𝑛 (𝑠𝑘+𝑛), incur the same cost as the corresponding

state 𝑠𝑘 in the alternative formulation, plus the associated action 𝑋 �̂�
𝑘
(𝑠𝑘 ). Because the two policies

take the same actions in all other states, it must be that the cost of policy �̃� is the same as the

cost of policy �̂�:
∑𝐾
𝑘=0𝑊

G
𝑘
(𝑠𝑘 , 𝑋 �̃�𝑘 (𝑠𝑘 )) =

∑𝐾
𝑘=0𝑊

G
𝑘
(𝑠𝑘 , 𝑋 �̂�𝑘 (𝑠𝑘 )). Finally, by construction there is a

one-to-one correspondence between policies in Π̃I and Π̂I, and thus the cost of an optimal policy

in each model must be the same:

𝑓 (𝑎) = min
�̃�∈Π̃I

{
𝐾∑︁
𝑘=0

𝑊G𝑘

(
𝑠𝑘 , 𝑋

�̃�
𝑘 (𝑠𝑘 )

)}
= min
�̂�∈Π̂I

{
𝐾∑︁
𝑘=0

𝑊G𝑘

(
𝑠𝑘 , 𝑋

�̂�
𝑘 (𝑠𝑘 )

)}
= ℎ(𝑎). (51)

□

We use sample average approximation (Kleywegt et al. 2002) to estimate the cost ℎ(𝑎) of the

alternative dynamic program. We estimate the period-𝑘 contribution𝑊G
𝑘
(𝑠𝑘 , 𝑥𝑘 ) under distribution

filtrationG via simulation. For each truck 𝑗 ∈ J , draw 𝑁 arrival times from unobserved distribution

𝐹𝐴 𝑗
. Organize the simulated arrival times into 𝑁 trajectories. Trajectory �̂�𝑛 = (�̂�𝑛1, . . . , �̂�

𝑛
𝐽
) is a

sequence of simulated arrival times, one for each truck. Connect a simulated arrival time trajectory

to decision epoch times as follows. Denote by �̄�𝑛
𝑘
= min{�̂�𝑛

𝑗
: 𝑗 ∈ J 𝑑 (𝑠𝑥

𝑘
)} the smallest simulated

arrival time in trajectory 𝑛 across trucks en route to the warehouse in state 𝑠𝑥
𝑘
. When the process
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occupies state 𝑠𝑘 and action 𝑥𝑘 is selected, denote by 𝑡𝑛
𝑘+1 = min{ �̄�𝑛

𝑘
, 𝑝𝑘 } the time of the next

decision epoch when truck arrival times follow trajectory �̂�𝑛. Let

𝑊𝑛
𝑘 𝑗 (𝑠𝑘 , 𝑥𝑘 , 𝑡

𝑛
𝑘+1) =


𝑡𝑛
𝑘+1 − 𝑡𝑘 , 𝑗 ∈ J

𝑤 (𝑠𝑘 ) and 𝑥𝑘 𝑗 = 0,

0, otherwise,
(52)

be the waiting time incurred by truck 𝑗 when the process occupies state 𝑠𝑘 , action 𝑥𝑘 is selected,

and the next epoch begins at time 𝑡𝑛
𝑘+1. Then, �̂�G

𝑘
(𝑠𝑘 , 𝑥𝑘 ) = 1/𝑁∑𝑁

𝑛=1
∑
𝑗∈J𝑊

𝑛
𝑘 𝑗
(𝑠𝑘 , 𝑥𝑘 , 𝑡𝑛𝑘+1) is an

unbiased and consistent estimate of𝑊G
𝑘
(𝑠𝑘 , 𝑥𝑘 ). Thus, we approximate the penalized problem as

ℎ̂(𝑎) = min
�̂�∈Π̂I

{
𝐾∑︁
𝑘=0

�̂�G𝑘

(
𝑠𝑘 , 𝑋

�̂�
𝑘 (𝑠𝑘 )

)}
. (53)

As the number of samples 𝑁 grows, ℎ̂(𝑎) converges to ℎ(𝑎) (Kleywegt et al. 2002).

Equations (54)–(113) model as a MILP the sample average approximation in Equation (53).

Table 1 states the purpose of each variable in the MILP and the discussion below outlines the

objective and constraints. Denote by 𝑏(𝑎) the cost of an optimal MILP solution. Proposition 4

asserts that if arrival times 𝑎 are unique, then 𝑏(𝑎) equals the cost ℎ̂(𝑎) of the sample average

approximation. The result follows from using algebraic variables and constraints to express the

epochs, states, actions, transitions, and contributions in the sample average approximation. The

requirement of unique truck arrival times simplifies the MILP and is not a limitation. When we

use simulation to estimate dual bound 𝑊★
P , it is easy to check for duplicates. However, because

we model arrival times as continuous random variables, the probability of drawing two or more

identical arrival times is zero.

Minimize:
𝐾−1∑︁
𝑘=0


1
𝑁

𝑁∑︁
𝑛=1

©«
𝐽∑︁
𝑗=1
𝛿𝑛𝑗 𝑘

ª®¬
 (54)

Subject To:

Scheduling∑︁
𝑑∈D

𝑥 𝑗 𝑑 = 1 ∀ 𝑗 ∈ J (55)

𝑥𝑖𝑑 + 𝑥 𝑗 𝑑 − 𝑦𝑖 𝑗 − 𝑦 𝑗𝑖 ≤ 1 ∀(𝑖, 𝑗) ∈ J , 𝑖 ≠ 𝑗 ,∀𝑑 ∈ D (56)

𝑥𝑖𝑑 + 𝑥 𝑗 ℎ + 𝑦𝑖 𝑗 + 𝑦 𝑗𝑖 ≤ 2 ∀(𝑖, 𝑗) ∈ J , 𝑖 ≠ 𝑗 ,∀(𝑑, ℎ) ∈ D, 𝑑 ≠ ℎ (57)
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Table 1 MIP Variables and Definitions

Variable Definition

K set of decision epochs {0, . . . , 𝐾 = 2𝐽 − 1}
𝑢 𝑗 start time of truck 𝑗
𝑥 𝑗𝑑 1 if truck 𝑗 is assigned to dock 𝑑, 0 otherwise
𝑦 𝑗 𝑗′ 1 if truck 𝑗 precedes truck 𝑗 ′ at the same dock, 0 otherwise
𝑐 𝑗 completion time of truck 𝑗
𝑧 𝑗 𝑗′ 1 if start time of truck 𝑗 equals completion time of truck 𝑗 ′, 0 otherwise
𝜆 𝑗 𝑗′ 1 if start time of truck 𝑗 equals arrival time of truck 𝑗 ′, 0 otherwise
𝑡𝑘 time at decision epoch 𝑘
𝑞 𝑗𝑘 1 if decision epoch 𝑘 is the arrival of truck 𝑗 , 0 otherwise
𝑟 𝑗𝑘 1 if decision epoch 𝑘 is the completion of truck 𝑗 , 0 otherwise
𝑙𝑘 1 if decision epoch 𝑘 is triggered by a completion, 0 otherwise
𝜏𝑘 time of the next service completion after decision epoch 𝑘
𝑣𝑛
𝑗𝑘

1 if sample �̂�𝑛
𝑗
> 𝑡𝑘 and 𝑎 𝑗 > 𝑡𝑘 , 0 otherwise

𝛼𝑛
𝑗𝑘

1 if �̂�𝑛
𝑗
≥ 𝑡𝑘 − 𝜖 , 0 otherwise

𝛽 𝑗𝑘 1 if 𝑎 𝑗 ≥ 𝑡𝑘 − 𝜖 , 0 otherwise
𝑤 𝑗𝑘 1 if truck 𝑗 is waiting at decision epoch 𝑘 , 0 otherwise
ℎ 𝑗𝑘 1 if 𝑡𝑘 is greater or equal than 𝑎 𝑗 , 0 otherwise
𝑔 𝑗𝑘 1 if 𝑡𝑘 is less than 𝑢 𝑗 , 0 otherwise
𝑚𝑛

𝑘
minimum of 𝜏𝑘 and sampled arrivals in the set {�̂�𝑛

𝑗
, 𝑗 ∈ J , 𝑛 ∈ N : 𝑣𝑛

𝑗𝑘
= 1}

𝜂𝑛
𝑗𝑘

1 if 𝑚𝑛
𝑘
= �̂�𝑛

𝑗
, 0 otherwise

𝛾𝑛
𝑘

1 if 𝑚𝑛
𝑘
= 𝜏𝑘 , 0 otherwise

𝛿𝑛
𝑗𝑘

waiting time for sample 𝑛 at decision epoch 𝑘 for truck 𝑗

𝑢𝑖 + 𝑝𝑖𝑥𝑖𝑑 −𝑀 (1− 𝑦𝑖 𝑗 ) ≤ 𝑢 𝑗 ∀(𝑖, 𝑗) ∈ J , 𝑖 ≠ 𝑗 ,∀𝑑 ∈ D (58)

𝑎 𝑗 ≤ 𝑢 𝑗 ∀ 𝑗 ∈ J (59)

Service Start Time

𝑐 𝑗 = 𝑝 𝑗 + 𝑢 𝑗 ∀ 𝑗 ∈ J (60)

𝑢 𝑗 ≤ 𝑐 𝑗 ′ +𝑀 (1− 𝑧 𝑗 𝑗 ′) ∀( 𝑗 , 𝑗 ′) ∈ J , 𝑗 ′ ≠ 𝑗 (61)

𝑢 𝑗 ≥ 𝑐 𝑗 ′ −𝑀 (1− 𝑧 𝑗 𝑗 ′) ∀( 𝑗 , 𝑗 ′) ∈ J , 𝑗 ′ ≠ 𝑗 (62)

𝑢 𝑗 ≤ 𝑎 𝑗 ′ +𝑀 (1−𝜆 𝑗 𝑗 ′) ∀( 𝑗 , 𝑗 ′) ∈ J , 𝑗 ′ ≠ 𝑗 (63)

𝑢 𝑗 ≥ 𝑎 𝑗 ′ −𝑀 (1−𝜆 𝑗 𝑗 ′) ∀( 𝑗 , 𝑗 ′) ∈ J , 𝑗 ′ ≠ 𝑗 (64)∑︁
𝑗 ′∈J , 𝑗 ′≠ 𝑗

𝑧 𝑗 𝑗 ′ +
∑︁
𝑗 ′∈J

𝜆 𝑗 𝑗 ′ = 1 ∀ 𝑗 ∈ J (65)

Decision Epochs

𝑡𝑘+1 ≥ 𝑡𝑘 ∀𝑘 ∈ K \ {𝐾} (66)

𝑡𝑘 ≥ 𝑎 𝑗 −𝑀 (1− 𝑞 𝑗 𝑘 ) ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (67)
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𝑡𝑘 ≤ 𝑎 𝑗 +𝑀 (1− 𝑞 𝑗 𝑘 ) ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (68)

𝑡𝑘 ≥ 𝑐 𝑗 −𝑀 (1− 𝑟 𝑗 𝑘 ) ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (69)

𝑡𝑘 ≤ 𝑐 𝑗 +𝑀 (1− 𝑟 𝑗 𝑘 ) ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (70)∑︁
𝑘∈K

𝑞 𝑗 𝑘 = 1 ∀ 𝑗 ∈ J (71)∑︁
𝑘∈K

𝑟 𝑗 𝑘 = 1 ∀ 𝑗 ∈ J (72)∑︁
𝑗∈J

𝑞 𝑗 𝑘 +
∑︁
𝑗∈J

𝑟 𝑗 𝑘 = 1 ∀𝑘 ∈ K (73)

Next Service Completion

𝑙𝑘 =
∑︁
𝑗∈J

𝑟 𝑗 𝑘 ∀𝑘 ∈ K (74)

𝜏𝑘 ≥ 𝑡𝑘+1 −𝑀 (1− 𝑙𝑘+1) ∀𝑘 ∈ K \𝐾 (75)

𝜏𝑘 ≥ 𝑡𝑘+𝑖 −𝑀 ©«1− 𝑙𝑘+𝑖 +
𝑖−1∑︁
𝑗=1
𝑙𝑘+ 𝑗

ª®¬ ∀𝑘 ∈ K \𝐾, 𝑖 = {2, ..., 𝐾 − 𝑘} (76)

𝜏𝑘 ≤ 𝑡𝑘+1 +𝑀 (1− 𝑙𝑘+1) ∀𝑘 ∈ K \𝐾 (77)

𝜏𝑘 ≤ 𝑡𝑘+𝑖 +𝑀 ©«1− 𝑙𝑘+𝑖 +
𝑖−1∑︁
𝑗=1
𝑙𝑘+ 𝑗

ª®¬ ∀𝑘 ∈ K \𝐾, 𝑖 = {2, ..., 𝐾 − 𝑘} (78)

Trucks Waiting

𝑡𝑘 ≥ 𝑎 𝑗 −𝑀 (1− ℎ 𝑗 𝑘 ) ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (79)

𝑡𝑘 ≤ 𝑎 𝑗 − 𝜖 +𝑀ℎ 𝑗 𝑘 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (80)

𝑡𝑘 ≤ 𝑢 𝑗 − 𝜖 +𝑀 (1− 𝑔 𝑗 𝑘 ) ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (81)

𝑡𝑘 ≥ 𝑢 𝑗 −𝑀𝑔 𝑗 𝑘 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (82)

𝑤 𝑗 𝑘 ≤ ℎ 𝑗 𝑘 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (83)

𝑤 𝑗 𝑘 ≤ 𝑔 𝑗 𝑘 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (84)

𝑤 𝑗 𝑘 ≥ ℎ 𝑗 𝑘 + 𝑔 𝑗 𝑘 − 1 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (85)

Arrival Time Samples

�̂�𝑛𝑗 − 𝑡𝑘 ≥ 𝜖 −𝑀 (1−𝛼𝑛𝑗 𝑘 ) ∀ 𝑗 ∈ J ,∀𝑘 ∈ K,∀𝑛 ∈ N (86)

�̂�𝑛𝑗 − 𝑡𝑘 ≤ 𝑀𝛼𝑛𝑗 𝑘 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K,∀𝑛 ∈ N (87)
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𝑎 𝑗 − 𝑡𝑘 ≥ 𝜖 −𝑀 (1− 𝛽 𝑗 𝑘 ) ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (88)

𝑎 𝑗 − 𝑡𝑘 ≤ 𝑀𝛽 𝑗 𝑘 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (89)

𝑣𝑛𝑗 𝑘 ≤ 𝛼
𝑛
𝑗 𝑘 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K,∀𝑛 ∈ N (90)

𝑣𝑛𝑗 𝑘 ≤ 𝛽 𝑗 𝑘 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K,∀𝑛 ∈ N (91)

𝑣𝑛𝑗 𝑘 ≥ 𝛼
𝑛
𝑗 𝑘 + 𝛽 𝑗 𝑘 − 1 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K,∀𝑛 ∈ N (92)

Waiting Times

𝑚𝑛𝑘 ≤ 𝜏𝑘 ∀𝑘 ∈ K,∀𝑛 ∈ N (93)

𝑚𝑛𝑘 ≥ 𝜏𝑘 −𝑀 (1− 𝛾
𝑛
𝑘 ) ∀𝑘 ∈ K,∀𝑛 ∈ N (94)

𝑚𝑛𝑘 ≤ �̂�
𝑛
𝑗 +𝑀 (1− 𝑣𝑛𝑗 𝑘 ) ∀ 𝑗 ∈ J ,∀𝑘 ∈ K,∀𝑛 ∈ N (95)

𝑚𝑛𝑘 ≥ �̂�
𝑛
𝑗 −𝑀 (1− 𝜂𝑛𝑗 𝑘 ) ∀ 𝑗 ∈ J ,∀𝑘 ∈ K,∀𝑛 ∈ N (96)∑︁

𝑗∈J
𝜂𝑛𝑗 𝑘 + 𝛾

𝑛
𝑘 = 1 ∀𝑘 ∈ K,∀𝑛 ∈ N (97)

𝜂𝑛𝑗 𝑘 ≤ 𝑣
𝑛
𝑗 𝑘 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K,∀𝑛 ∈ N (98)

𝛿𝑛𝑗 𝑘 ≤ 𝑀𝑤 𝑗 𝑘 ∀ 𝑗 ∈ J ,∀𝑘 ∈ K,∀𝑛 ∈ N (99)

𝛿𝑛𝑗 𝑘 ≤ 𝑚
𝑛
𝑘 − 𝑡𝑘 ∀𝑘 ∈ K,∀𝑛 ∈ N ,∀ 𝑗 ∈ J (100)

𝛿𝑛𝑗 𝑘 ≥ 𝑚
𝑛
𝑘 − 𝑡𝑘 −𝑀 (1−𝑤 𝑗 𝑘 ) ∀ 𝑗 ∈ J ,∀𝑘 ∈ K,∀𝑛 ∈ N (101)

Decision Variables

𝑢 𝑗 ≥ 0 ∀ 𝑗 ∈ J (102)

𝑡𝑘 ≥ 0 ∀𝑘 ∈ K (103)

𝜏𝑘 ≥ 0 ∀𝑘 ∈ K \𝐾 (104)

𝑚𝑛𝑘 ≥ 0 ∀𝑛 ∈ N ,∀𝑘 ∈ K (105)

𝛿𝑛𝑗 𝑘 ≥ 0 ∀𝑛 ∈ N ,∀𝑘 ∈ K,∀ 𝑗 ∈ J (106)

𝑙𝑘 ∈ {0,1} ∀𝑘 ∈ K (107)

𝑥 𝑗 𝑑 ∈ {0,1} ∀ 𝑗 ∈ J ,∀𝑑 ∈ D (108)

𝑦 𝑗 𝑗 ′ , 𝜆 𝑗 𝑗 ′ , ∈ {0,1} ∀( 𝑗 , 𝑗 ′) ∈ J , 𝑗 ≠ 𝑗 ′ (109)

𝑧 𝑗 𝑗 ′ ∈ {0,1} ∀( 𝑗 , 𝑗 ′) ∈ J , 𝑗 ≠ 𝑗 ′ (110)

𝛾𝑛𝑘 ∈ {0,1} ∀𝑘 ∈ K,∀𝑛 ∈ N (111)
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𝑞 𝑗 𝑘 , 𝑟 𝑗 𝑘 , 𝛽 𝑗 𝑘 , ℎ 𝑗 𝑘 , 𝑔 𝑗 𝑘 , 𝑤 𝑗 𝑘 ∈ {0,1} ∀ 𝑗 ∈ J ,∀𝑘 ∈ K (112)

𝜂𝑛𝑗 𝑘 , 𝛼
𝑛
𝑗 𝑘 , 𝑣

𝑛
𝑗 𝑘 ∈ {0,1} ∀ 𝑗 ∈ J ,∀𝑘 ∈ K,∀𝑛 ∈ N (113)

Scheduling. Constraints (55) require that each truck receive service at exactly one dock. Con-

straints (56) ensure that if both trucks 𝑖 and 𝑗 are assigned to dock 𝑑, then one truck must precede

the other. Constraints (57) require that precedence variables 𝑦𝑖 𝑗 and 𝑦 𝑗𝑖 be zero if trucks 𝑖 and 𝑗 are

assigned to different docks. At each dock, Constraints (58) ensure that the end of service for one truck

is not larger than the start of service for the subsequent truck, where 𝑀 = max 𝑗∈J {𝑎 𝑗 } +
∑
𝑗∈J 𝑝 𝑗 is

a large number set to the largest arrival time plus the sum of service times. Constraints (59) ensure

that a truck’s service start time occurs at or after its arrival time.

Service Start Time. Constraints (60) define a truck’s completion time as its service start time

plus service time. Constraints (61) and (62) ensure that the service start time of truck 𝑗 equals the

service completion time of truck 𝑗 ′ if truck 𝑗 begins service immediately after truck 𝑗 ′ finishes

service. Similarly, Constraints (63) and (64) ensure that the service start time of truck 𝑗 equals

the arrival time of truck 𝑗 ′ if truck 𝑗 begins service immediately after 𝑗 ′ arrives. Constraints (65)

require a truck’s service start times to coincide with an arrival time or a service completion time.

Decision Epochs. Constraints (66) order decision epochs by ensuring that the time of a given

epoch is at least as large as the time of the previous epoch. Constraints (67) and (68) ensure that

the time of decision epoch 𝑘 equals the arrival time of truck 𝑗 if epoch 𝑘 is triggered by the arrival

of truck 𝑗 . Similarly, Constraints (69) and (70) ensure that the time of decision epoch 𝑘 equals

the service completion time of truck 𝑗 if the epoch is triggered by the service completion of truck

𝑗 . Constraints (71) and (72) require that each truck triggers exactly one decision epoch tied to its

arrival and another decision epoch tied to its service completion. Constraints (73) require that each

decision epoch is triggered by a truck arrival or a service completion, but not by both.

Next Service Completion. Constraints (74) define 𝑙𝑘 as an indicator for whether decision epoch

𝑘 is triggered by a service completion. Constraints (75) and (76) ensure that 𝜏𝑘 is at least the time

of the next service completion after decision epoch 𝑘 , and Constraints (77) and (78) ensure that 𝜏𝑘
is at most this value. Constraints (75) and (77) treat epoch 𝑘 + 1 while Constraints (76) and (78)

address subsequent epochs.

Trucks Waiting. Constraints (79) and (80) identify truck arrival times less than or equal to

the time of each decision epoch. Constraints (81) and (82) identify service start times greater

than the time of each decision epoch. To implement the strict inequalities, we set 𝜖 to 0.00001.
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Constraints (83), (84), and (85) identify trucks that satisfy both conditions: the decision epoch time

is greater than or equal to the arrival time, but less than the service start time.

Arrival Time Samples. Constraints (86) and (87) identify arrival time samples greater than the

time of each decision epoch. Constraints (88) and (89) identify arrival time realizations greater than

the time of each decision epoch. Constraints (90), (91), and (92) identify arrival time samples such

that both conditions are satisfied: the arrival time sample and the arrival time realization are both

greater than the time of each decision epoch.

Waiting Times. For each arrival time sample, Constraints (93)–(98) work together to calcu-

late the smaller of the next service completion time and the arrival time samples identified by

Constraints (86)–(92). Variable 𝑚𝑛
𝑘

represents the minimum for sample 𝑛 at epoch 𝑘 . Then, Con-

straints (99)–(101) calculate the waiting time for truck 𝑗 in sample 𝑛 at epoch 𝑘 as 𝛿𝑛
𝑗 𝑘

.

Objective. Equation (54) calculates the objective as the sum of 𝛿𝑛
𝑗 𝑘

across all epochs, all samples,

and all trucks.

Proposition 4 (Penalized Problem). If truck arrival times 𝑎 are unique, then 𝑏(𝑎) = ℎ̂(𝑎).

Proof.

ℎ̂(𝑎) = min
�̂�∈Π̂I

{
𝐾∑︁
𝑘=0

�̂�G𝑘

(
𝑠𝑘 , 𝑋

�̂�
𝑘 (𝑠𝑘 )

)}
(114)

= min
�̂�∈Π̂I


𝐾∑︁
𝑘=0

1
𝑁

𝑁∑︁
𝑛=1

∑︁
𝑗∈J

𝑊𝑛
𝑘 𝑗

(
𝑠𝑘 , 𝑋

�̂�
𝑘 (𝑠𝑘 ), 𝑡

𝑛
𝑘+1

) (115)

= min
�̂�∈Π̂I


𝐾∑︁
𝑘=0

1
𝑁

𝑁∑︁
𝑛=1

∑︁
𝑗∈J

(
𝑡𝑛𝑘+1 − 𝑡𝑘

)
1
{
𝑗 ∈ J𝑤 (𝑠𝑘 ) and

(
𝑋 �̂�𝑘 (𝑠𝑘 )

)
𝑘 𝑗
= 0

} (116)

= min
�̂�∈Π̂I


𝐾∑︁
𝑘=0

1
𝑁

𝑁∑︁
𝑛=1

∑︁
𝑗∈J

(
min

{
�̄�𝑛𝑘 , 𝑝𝑘

}
− 𝑡𝑘

)
1
{
𝑎 𝑗 ≤ 𝑡𝑘 < 𝑢�̂�𝑗

} (117)

= min

{
𝐾∑︁
𝑘=0

1
𝑁

𝑁∑︁
𝑛=1

∑︁
𝑗∈J

(
min

{{
�̂�𝑛𝑗 : 𝑎 𝑗 > 𝑡𝑘 , 𝑗 ∈ J

}
∪ 𝜏𝑘

}
− 𝑡𝑘

)
𝑤 𝑗 𝑘 :

(55)–(92), (102)–(104), (107)–(110), (112)–(113)

}
(118)

= min

𝐾−1∑︁
𝑘=0

1
𝑁

𝑁∑︁
𝑛=1

∑︁
𝑗∈J

𝛿𝑛𝑗 𝑘 : (55)–(113)
 (119)

= 𝑏(𝑎) (120)
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Equation (114) is the definition of ℎ̂(𝑎). Equation (115) follows from the definition of

�̂�G
𝑘
(𝑠𝑘 , 𝑋 �̂�𝑘 (𝑠𝑘 )). Equation (116) follows from the definition of 𝑊𝑛

𝑘 𝑗
(𝑠𝑘 , 𝑋 �̂�𝑘 (𝑠𝑘 ), 𝑡

𝑛
𝑘+1). The differ-

ence between epoch times in Equation (117) follows from the definition of 𝑡𝑛
𝑘+1. The change in the

indicator function expresses the condition that truck 𝑗 is waiting and not assigned as the condition

that arrival is at or before 𝑡𝑘 and assignment is after 𝑡𝑘 . Variable 𝑢�̂�
𝑗

is the service start time of

truck 𝑗 in policy �̂�. Per the definitions of J𝑤 (·) and the zero action, the conditions are equivalent.

Equation (118) transitions from optimization over policies to a mathematical program expressed

as an objective subject to constraints. The term min{{�̂�𝑛
𝑗

: 𝑎 𝑗 > 𝑡𝑘 , 𝑗 ∈ J} ∪ 𝜏𝑘 } is the smallest

of sampled arrival times for trucks en route and the next service completion. This captures the

smaller of �̄�𝑛
𝑘

and 𝑝𝑘 . Variable 𝑤 𝑗 𝑘 captures the indicator function and the listed constraints model

decision epochs, states, actions, transitions, and the estimated contribution. The assumption that

truck arrival times are unique ensures that epochs tied to arrivals do not occur at the same time,

which in turn ensures that contributions at arrival epochs are correctly calculated. Equation (119)

captures the objective via variables 𝛿𝑛
𝑗 𝑘

. Epoch 𝐾 is not included in the outer summation because

the contribution is zero. Epoch 𝐾 corresponds to the final service completion. At time 𝑡𝐾 , because

there are no trucks in the yard, the expected waiting time is zero. Equation (120) follows from the

definition of the MILP. □

6. Computational Experiments

This section details our computational experience with the lookahead policy and and dual bound.

We demonstrate the strength of both and their real-world utility. Problem instances are outlined in

§6.1, benchmarks are described in §6.2, and results are presented in §6.3.

6.1. Problem Instances

At the time of this writing, we did not have adequate nondisclosure agreements with Poste Italiene’s

carriers, who own the ETA data. Although we could not directly use this data, the instances we

construct are representative of real scenarios encountered at Poste warehouses.

A problem instance specifies the number of trucks 𝐽, the number of docks 𝐷, a service time

𝑝 𝑗 for each truck 𝑗 ∈ J , an unobserved arrival time distribution 𝐹𝐴 𝑗
for each truck 𝑗 ∈ J , and a

process governing ETAs for each truck 𝑗 ∈ J . We consider values of 𝐷 ranging from 1 to 10 and

values of 𝐽 ranging from 10 to 50. Scenarios across this range are typical in practice. Some facilities

consist of only one dock and many facilities consist of just a few. As mentioned in §1, warehouses
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with many docks typically partition the docks into operational groups. In the case of Poste Italiane,

a group may consist of as many as 10 docks.

For a given number of trucks 𝐽, each service time 𝑝 𝑗 is chosen randomly from a triangular

distribution with support [10,100] and mode 20. This skews service times toward the lower end

of the support, but leaves open the possibility that some trucks require much longer to complete

service. Each truck arrival time 𝐴 𝑗 follows a truncated normal distribution with underlying mean

�̂� 𝑗 , underlying variance �̂� 𝑗 = 20, and support [0,∞). Arrivals are connected to service times and

the number of docks by randomly choosing �̂� 𝑗 from the range [0, 𝜃∑ 𝑗∈J 𝑝 𝑗/𝐷]. The parameter

𝜃 controls traffic intensity. Small values concentrate truck arrivals at the beginning of the time

horizon. In this scenario, which approaches deterministic machine scheduling problems, assignment

of trucks to docks in the order of shortest service time works well (Pinedo 2022). Large values

spread out truck arrivals to the point that waiting for assignment is unnecessary. We set 𝜃 to 0.5.

This value results in enough traffic to require non-trivial decision making. ETAs for truck 𝑗 are

drawn from a normal distribution with mean 𝜇𝑒
𝑗
= �̂� 𝑗 + 𝜅 and standard deviation 𝜎𝑒

𝑗
= 1. Noise

parameter 𝜅 is normally distributed with mean zero and variance 𝜂. For the bulk of our experiments,

we set 𝜂 to 1. ETAs occur at a fixed frequency of once every time unit for each truck.

Belief distributions are updated via constrained Kalman filtering (Simon and Simon 2010). The

method applies the conventional Kalman filter (Särkkä 2013, ch. 4.3) and truncates predictions to

satisfy the requirement that the arrival time of a vehicle en route be greater than the current time.

The Kalman filter assumes arrival time and ETAs for each truck 𝑗 are normally distributed random

variables with known measurement noise. The noise is normally distributed with mean zero and

variance 𝑟 𝑗 = 100. Updating the belief distribution proceeds as follows. Let 𝑡 and 𝑡′ > 𝑡 denote the

times of two consecutive ETAs for truck 𝑗 and let 𝑒𝑡′ be the ETA at time 𝑡′. The filter for truck 𝑗

takes the probability P(𝐴 𝑗 |𝑒 𝑗 (𝑡′)) of arrival time conditional on ETAs through time 𝑡′ to be normal

with mean 𝜇𝑡′ 𝑗 = 𝜇𝑡 𝑗 +𝐺 𝑡 𝑗 (𝑒𝑡′ − 𝜇𝑡 𝑗 ) and variance 𝑏𝑡′ 𝑗 = (1−𝐺 𝑡 𝑗 )𝑏𝑡 𝑗 , where 𝐺 𝑡 𝑗 = 𝑏𝑡 𝑗/(𝑏𝑡 𝑗 + 𝑟 𝑗 ) is

the Kalman gain. Belief distribution 𝐹𝐴 𝑗
(𝑡′) is obtained by truncating P(𝐴 𝑗 |𝑒 𝑗 (𝑡′)) at current time

𝑡′. We take initial belief distribution 𝐹𝐴 𝑗
(𝑡0) for truck 𝑗 to be truncated normal with underlying

mean equal to the most recent ETA for truck 𝑗 , with underlying standard deviation equal to 20 plus

a random noise drawn from the standard normal distribution, and with support [0,∞).
To ensure that the belief distribution converges to the unobserved distribution, we run the Kalman

filter backwards across the final updates. Let 𝑇𝑗 be the time of the last ETA before arrival time 𝑎 𝑗 .

Set 𝜇𝑇 𝑗 𝑗 = �̂� 𝑗 and 𝑏𝑇 𝑗 𝑗 = �̂� 𝑗 . This initializes the backwards application of the filter. Then, given
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𝜇𝑡′ 𝑗 , 𝑏𝑡′ 𝑗 , and 𝑒𝑡′ , the mean and variance at time 𝑡 are obtained from the forward equations as

𝜇𝑡 𝑗 = 𝜇𝑡′ 𝑗 − 𝑏𝑡 𝑗 (𝑒𝑡′ − 𝜇𝑡′ 𝑗 )/𝑟 𝑗 and 𝑏𝑡 𝑗 = 𝑟 𝑗𝑏𝑡′ 𝑗/(𝑟 𝑗 − 𝑏𝑡′ 𝑗 ), respectively. Begin by setting 𝑡′ to𝑇𝑗 , then

follow this trajectory for the final 20 updates. Earlier updates follow the Kalman filter equations in

the forward direction.

6.2. Benchmarks

We use benchmarks to assess the quality of the lookahead policy and dual bound. We compare the

lookahead policy to the dual bound and to the cost of a first-come-first-served (fcfs) benchmark,

a policy often used in practice for dynamic truck scheduling. Policy 𝜋fcfs selects actions based on

arrival times. At each decision epoch, the truck at the yard with the earliest arrival is assigned to a

dock. To measure the benefit of dual bound 𝑊★
P , we compare it to the expected value with perfect

information (EVPI). In the context of §5, the EVPI is the expected value of optimal policies under

perfect information filtration I with zero penalty: E[min�̂�∈Π̂I{
∑𝐾
𝑘=0𝑊

I
𝑘
(𝑠𝑘 , 𝑋 �̂�𝑘 (𝑠𝑘 ))}|F]. The inner

optimization is a scheduling problem with release dates and identical machines. We formulate this

problem as a MILP that minimizes waiting time across all trucks subject to scheduling constraints:

min{∑ 𝑗∈J 𝑢 𝑗 − 𝑎 𝑗 : (55)–(59), (102), (108), (109)}. It is straightforward to extend the analyses in

§5 to show that𝑊★ ≥ EVPI. A positive gap between𝑊★
P and the EVPI highlights the advantage of

the information penalty.

6.3. Results and Discussion

We conduct four groups of experiments. The first group examines the quality of the lookahead

policy and dual bound. The second explores policy performance at scale. The third group assess

the utility of filtering. The fourth group looks at the affect of ETA accuracy.

In the Appendix, we justify use of the lookahead mechanism that drives the one-step lookahead

policy. We compare the ILS procedure underlying the mechanism to exact solutions and examine

the computational acceleration strategies for decision rule execution described in §4.3. We conclude

that the ILS procedure returns high quality solutions and that the acceleration strategies significantly

decrease the computation required to execute decision rules with only nominal loss in quality.

Policy costs and dual bounds are estimated via simulation. For a given problem instance, we

sample 10 information trajectories, then execute the policy or dual bound across each. Average

performance over the trajectories provides an unbiased estimate. The sample average approximation

used to estimate the cost of the penalized problem employs 𝑁 = 15 trajectories. Throughout our
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Figure 2 Dual Bounds and Policy Costs
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experiments, for a given number of docks 𝐷 and trucks 𝐽, values are an average across 15 instances

with randomly generated service times, arrival time distributions, and ETAs. Thus, a single value

represents the average across 10 information trajectories for each of 15 instances.

Experiments are conducted on a Linux machine equipped with an AMD EPYC 7453 processor

and 1 TB of RAM. The processor consists of 112 cores clocked at 2.75 GHz. The lookahead policy

is implemented in Java 21.0.2 and executed using a single thread. MILPs required for dual bound

calculations are solved to optimality with CPLEX version 22.1.1.

6.3.1. Policy Quality and Dual Bounds Figure 2 shows dual bound 𝑊★
P , the expected cost

E[𝑊𝜋one
G
|F] of the lookahead policy under the distribution filtration, the cost𝑊𝜋one

F of the lookahead

policy under the natural filtration, and the cost𝑊𝜋fcfs
F of the first-come-first-served policy under the

natural filtration, all as a percentage increase over the EVPI. The left portion of the figure shows

values for problems with 𝐷 = 1 dock and 𝐽 = 10 trucks. The right portion increases the number of

docks to 𝐷 = 2. Tractability issues prevent calculation of the dual bound for larger instances.

Figure 2 shows that dual bound 𝑊★
P is strong. Recall from §5.2 that 𝑊★

P can be no larger than

the expected cost E[�̃�★
G
|F] of an optimal MDP policy. Additionally, notice that E[𝑊𝜋one

G
|F] must

be at least as large as 𝑊★
P . Because the gaps between 𝑊★

P and E[𝑊𝜋one
G
|F] in Figure 2 are nearly

zero, there is little room to improve𝑊★
P for these instances. Further, compared to the EVPI, which

is relatively straightforward to obtain, the more complex 𝑊★
P is 11 percentage points higher when

𝐷 = 1 and 9 percentage points higher when 𝐷 = 2. Not only is𝑊★
P a better gauge for policy quality

than the EVPI, but it is nearly the largest dual bound that can be obtained from the analysis of §5.

Figure 2 indicates that the lookahead policy is very good. When 𝐷 = 1 the gap is 0.26 percent,

and when 𝐷 = 2, the gap is 0.62 percent. Thus, the policies are effectively optimal under the
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Figure 3 Improvement over Practice and Computational Effort
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distribution filtration. Under the natural filtration, the gaps are larger. When 𝐷 = 1 policy cost
𝑊
𝜋one
F is 2 percentage points larger than 𝑊★

P , and when 𝐷 = 2 it is 10 percentage points higher.
Because the dual bounds are virtually at the largest possible values, these gaps must be due to partial
observability, suboptimal decisions, or both. The policy’s strong performance under the distribution
filtration suggests that the gaps under the natural filtration are primarily due to partial observability.
The evidence points to the lookahead policy as making nearly optimal decisions, but because it
must work with belief distributions on truck arrival times instead of with actual distributions, the
policy costs are higher, and hence the gaps are larger.

Additionally, relative to the first-come-first-served policy common in practice, the lookahead
policy is substantially better. When 𝐷 = 1, the cost of the lookahead policy is 29 percentage points
lower than the cost of the first-come-first-served policy. When 𝐷 = 2, the difference is 15 percentage
points. As we show= in the following, this trend holds as problem size grows. In these cases, even
though the dual bound is computationally prohibitive to calculate, the results presented in Figure 2
give us confidence that the lookahead policy makes high quality decisions.

6.3.2. Policy Performance at Scale Figure 3 explores the performance of the lookahead policy
at scale. For various numbers of docks 𝐷 and trucks 𝐽, the figure shows the cost 𝑊𝜋one

F of the
lookahead policy as the percentage below the cost𝑊𝜋fcfs

F of the first-come-first-served policy. It also
shows the average CPU time required to execute the lookahead decision rule in each epoch.

Figure 3 demonstrates that the lookahead policy is an attractive alternative to practice. Across all
instances, the lookahead policy outperforms the first-come-first-served policy by a wide margin.
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The average decrease in cost of𝑊𝜋one
F relative to𝑊𝜋fcfs

F is 29 percent. While we do not know how the

lookahead policy compares to an optimal policy, the results in Figure 2 suggest that it is competitive.

Additionally, the per-epoch CPU time is small enough for real-time decisions. Even at 𝐷 = 10 docks

and 𝐽 = 50 trucks, which represents the high end of what might be encountered in practice, the

lookahead policy requires only 15.3 seconds on average to return an action.

6.3.3. The Value of Filtering The literature on truck scheduling does not consider how the

noise surrounding ETAs can impact decisions. As described in §2, the models and methods in the

extant literature treat ETAs as actual truck arrival times. They do not employ Bayesian filters that

use ETAs to update belief distributions. As we show in what follows, explicit consideration of ETAs

as a noisy signal for arrival times is an important ingredient for better decisions.

We explore the benefit of filtering by comparing the lookahead policy to two methods that do not

use filters. The first method modifies the lookahead policy to operate without belief distributions. In

Equation (2), rather than consider a range of outcomes to estimate the cost-to-go, the decision rule

considers the sole outcome that trucks en route arrive per the current ETAs. If 𝑒 𝑗 is the most recent

ETA for truck 𝑗 , then �̂� 𝑗 = 𝑒 𝑗 for each truck 𝑗 ∈ J 𝑑 (𝑠𝑘 ) en route to the warehouse and �̂� 𝑗 equals

known arrival time 𝑎 𝑗 for each truck 𝑗 ∈ J \ J 𝑑 (𝑠𝑘 ) already arrived to the warehouse. This event

is assumed to happen with probability one, which yields the decision rule arg min{𝑊𝑘 (𝑠𝑘 , 𝑥𝑘 ) +
�̂�

(
𝑠𝑥
𝑘
, �̂�
)

: 𝑥𝑘 ∈ X(𝑠𝑘 )}. The second method mimics the rolling horizon procedures that dominate

the truck scheduling literature described in §2. The ILS is executed from current state 𝑠𝑘 with

arrival times �̂� and returns order �̂�. Let �̂� = min{𝑔 ∈ {1, ..., |�̂� |} : 𝑢�̂�(𝑔) = 𝑡𝑘 } be the smallest index

of �̂� such that the service start time is equal to current time 𝑡𝑘 . Then, �̂�(�̂�) is the first truck in order

�̂� to start service at time 𝑡𝑘 . If �̂�(�̂�) exists, the decision rule assigns truck �̂�(�̂�) to an available dock.

If �̂�(�̂�) does not exist, the decision rule returns the zero action.

Figure 4 shows the cost of the lookahead policy without filtering and the cost of the rolling

horizon policy without filtering, both as percent above the cost of the lookahead policy with filtering.

The analysis uses the same problem instances associated with Figure 3. The figure underscores

the vital role of filtering. Without filtering, the average cost of the lookahead policy is 8.7 percent

higher. Notably, the rolling horizon policy without filtering is 9 percent higher, on average, than the

lookahead policy with filtering. Thus, when belief distributions are ignored, there is little benefit to

using the lookahead mechanism beyond what is known in the current state. To substantially improve

decisions, uncertainty surrounding ETAs must be explicitly incorporated into action selection.
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Figure 4 To Filter, or Not to Filter
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6.3.4. ETA Accuracy Figure 5 examines the impact of ETA accuracy. Up to this point, the

variance 𝜂 of the mean ETA noise parameter 𝜅 has been set to 1. The figure presents the costs of

lookahead policies when 𝜂 is increased to 5, 10, 15, 20, 25, and 30. The values are averages across

the same problem instances associated with Figure 3.

Expectedly, Figure 5 demonstrates that more accurate ETAs lead to lower costs than less accurate

ETAs. Increasing 𝜂 from 1 to 30 leads to a cost increase of almost 3 percent. However, even when 𝜂

is at 30, the average cost of the lookahead policy is substantially lower than the average cost of the
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first-come-first-served policy when 𝜂 equals 1. Thus, our methodology is still valuable even when

the noise to signal ratio is high.

7. Conclusions

The demands placed on today’s logistics networks are considerable. In an industry with thin

margins, customers’ expectations of short lead times and responsiveness are difficult to satisfy. Our

lookahead policy for scheduling inbound trucks at warehouses and distribution centers significantly

reduces expected truck waiting times relative to current practice, on average by 29 percent. Not

only can these reductions improve customer satisfaction across the network, but they can also have

a meaningful impact on profitability.

Beyond potential contributions to the practice of logistics, our work contributes to transportation

research in two notable ways. First, we recognize that inbound truck arrival time distributions are

often difficult to observe. However, we show how to approximate them with ETAs. Incorporation

of ETAs into our POMDP more accurately models the actual information available to dispatchers.

Moreover, in contrast to the truck scheduling literature, which takes ETAs as point estimates, we

show that filtering ETAs to characterize uncertainty in truck arrival times is key to better scheduling

decisions.

Second, we use information relaxations and an information penalty to develop a dual bound that

is much stronger than a bound obtained only through perfect information. On average, our penalized

dual bound is nearly 10 percent larger than the expected value with perfect information. With a

duality gap of less than one percent, our bound allows us to state with confidence that the lookahead

policy is nearly optimal when truck arrival time distributions are fully observed. When distributions

are hidden, this result gives credibility to the notion that a larger duality gap of about 10 percent is

due primarily to partial observability of the arrival time distributions rather than suboptimality of

the policy. Although our analyses are specific to inbound truck scheduling with ETAs, they serve as

a template for the transportation science and logistics community to develop dual bounds for other

problems.

Future work on dynamic and stochastic inbound truck scheduling may need to navigate the tension

between realism and tractability. For example, a more true-to-life model might incorporate service

time uncertainty. Although such an extension seems pragmatic, it may pose substantial challenges.

Certainly heuristic policies can be developed for such a problem. But proving their goodness via

dual bounds may require substantial investment. For now, adding ETAs to the collection of models

and methods for dynamic truck scheduling is a significant step forward.
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Appendix

A. Iterated Local Search

Algorithm 1 details the ILS procedure discussed in §4.1. Line 1 initializes the process. The search

begins with an order 𝛾fcfs that sequences trucks first-come-first-served by their arrival times �̂�. Order

𝛾fcfs initializes the incumbent solution �̂�. Iteration counter 𝑖 begins at 0. The loop on line 2 executes

perturbation followed by local search 𝐼max = 5000 times. Lines 3–7 comprise the perturbation phase.

Every 𝑃 = 250 iterations, perturbation parameter 𝑟 is set to 𝑟1 = 0.7. Otherwise, 𝑟 is set to 𝑟2 = 0.3.

Order 𝛾 is established by randomly relocating ⌊ 𝑟 · |J 𝑑 (𝑠) ∪ J𝑤 (𝑠) | ⌋ elements of incumbent

solution �̂�. This operation relocates up to a proportion 𝑟 of the the number of trucks en route to the

warehouse and the number of trucks waiting at the warehouse for assignment to a dock. Lines 8–14

comprise the local search phase. The loop on line 8 executes first-improving local search across the

four neighborhood structures listed on line 9. Whenever an order 𝛾′ is found to improve on order 𝛾,

lines 10–13 replace 𝛾 with 𝛾′ and reset the search. The process iterates until an improving solution

cannot be found. If the cost �̂� (𝑠, �̂�, 𝛾) of the resulting order 𝛾 is smaller than the cost �̂� (𝑠, �̂�, �̂�) of

the incumbent solution �̂�, then lines 15 and 16 replace �̂� with 𝛾. Line 17 increments the iteration

counter. The search concludes on line 18.

B. Lookahead Validation

The lookahead mechanism described in §4 is the basis for the lookahead policy. In this section,

we validate the mechanism and explore the proposed acceleration procedures for decision rule

execution.

The lookahead mechanism employs ILS to heuristically solve the optimization problem

min{�̂� (𝑠, �̂�, 𝛾) : 𝛾 ∈ Γ(𝑠)}. The aim of the ILS is to quickly identify high quality solutions. To

verify that the ILS performs well, we compare heuristic solution values returned by the ILS to

solution values obtained through mixed integer linear programming. We also track the time required

to obtain each. We take initial state 𝑠0 as the input state. For a given sequence of truck arrival times

�̂�, the optimization problem treated by the ILS is equivalent to the perfect information problem

with zero penalty described in §6.2. We use the CPLEX solver to address the perfect information

MILP.

Table 2 presents objective values and computing times across a range of problem instances. For

each combination of docks 𝐷 and trucks 𝐽, we generate service times as described in §6, plus

150 sequences of truck arrival times �̂� from the unobserved arrival time distributions. The figures
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Algorithm 1: Iterated Local Search
Input: State 𝑠 and arrival times �̂�

Output: Order �̂�

1 �̂�← 𝛾fcfs, 𝑖← 0

2 while 𝑖 < 𝐼max do
3 if 𝑖 mod 𝑃 = 0 then
4 𝑟← 𝑟1
5 else
6 𝑟← 𝑟2

7 𝛾← perturb ⌊ 𝑟 · |J 𝑑 (𝑠) ∪ J𝑤 (𝑠) | ⌋ trucks in �̂�

8 repeat
9 foreach neighborhood 𝑁 ∈ {two-way swap, insertion, four-way swap, insertion and swap} do

10 Find first 𝛾′ ∈ 𝑁 (𝛾) such that �̂� (𝑠, �̂�, 𝛾′) < �̂� (𝑠, �̂�, 𝛾)
11 if such 𝛾′ exists then
12 𝛾← 𝛾′

13 break

14 until no improvement

15 if �̂� (𝑠, �̂�, 𝛾) < �̂� (𝑠, �̂�, �̂�) then
16 𝛾★← 𝛾

17 𝑖← 𝑖 + 1
18 return �̂�

reported in the table are averages across the 150 optimization problems corresponding to these

samples. Columns three, four, and five report the best objective value obtained by CPLEX, the

number of CPU seconds required to obtain the value, and the number of instances out of 150 for

which CPLEX identifies an optimal solution, respectively. The CPU time is capped at two hours.

Columns six, seven, and eight report analogous figures for the ILS. Column nine indicates the

number of arrival time realizations out of 150 for which the ILS solution value is strictly less than

the solution value obtained by CPLEX. The results in Table 2 stop at problem instances with 𝐷 = 5

docks and 𝐽 = 25 trucks because CPLEX solution times far exceed the two-hour cap for larger

instances.

Table 2 confirms that the ILS solutions are high quality. When 𝐷 equals 2 and 3, CPLEX finds

the optimal solution value within the allotted time. The ILS matches these values. When 𝐷 equals

4 and 5, CPLEX does not always identify an optimal solution. In these cases, on average the

ILS identifies better solutions. Moreover, across all instances, the CPU time required by the ILS

procedure is smaller than the CPU time required by CPLEX. When 𝐷 is 3 and larger, the difference
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Table 2 ILS: High Quality Solutions and Fast Computation

CPLEX ILS

𝐷 𝐽 Objective CPU #Optimal Objective CPU #Optimal #Better

2 10 245.1 1.3 150 245.1 0.4 150 0
3 15 432.0 5957.7 150 432.0 0.9 150 0
4 20 463.1 7051.6 95 462.6 1.9 76 52
5 25 651.6 7203.2 56 651.2 3.5 40 88

CPLEX vs. ILS objective values and CPU times (seconds).

is considerable. These results validate the ILS as a means of obtaining high quality solutions to the

lookahead optimization.

Although the ILS executes quickly, because it must be executed many times to evaluate deci-

sion rules, the procedure can become computationally burdensome as problem size grows. The

acceleration procedures proposed in §4 provide four ways to decrease the time required to execute

a decision rule. Following the order of presentation in §4, we label the methods as (i), (ii), (iii),

and (iv). Table 3 shows the impact of the four rules on policy quality and computation time. For

lookahead policy 𝜋one, the table presents policy costs and CPU seconds per epoch for a range

of problem instances. Each figure is an average across instance realizations as described in §6.

Columns correspond to results obtained through none of the methods, each method in isolation,

and all the methods in tandem.

The figures in Table 3 indicate that computation time can be significantly reduced with only

nominal loss in policy quality. Relative to the case of using none of the methods, each method

in isolation offers some improvement in CPU seconds per epoch. However, using all methods in

tandem dramatically reduces computation time, on average by 84 percent. The reduction is large

enough to facilitate the use of lookahead decision rules for real-time decisions. Moreover, the

average increase in policy cost is less than 2 percent.
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