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Abstract

Max-min dynamic programs model sequential decision problems where policies are evalu-

ated via the worst-case reward across a set of scenarios representing future uncertainty. In the

standard backward induction algorithm for max-min dynamic programs, the effort required

to identify an optimal policy grows exponentially with the number of state variables. We de-

velop a bounded backward induction (BBI) procedure that uses upper and lower bounds on

rewards-to-go to curb this exponential growth by eliminating suboptimal decisions. BBI shifts

the problem of dimensionality to the task of identifying strong and tractable bounds. We pro-

pose a dual bounding technique that reduces the uncertainty faced by the decision maker. The

technique leads to a family of dual bounds that vary in strength and in the computational effort

required to obtain them. Policies are recovered by embedding dual bounds in a lookahead pro-

cedure, which in turn yields a policy performance guarantee. For budget-style scenario sets,

we provide results that ease the optimization required for policy evaluation and dual bound

calculation. We demonstrate the utility of BBI via application to a media selection problem

with yield uncertainty. Using our general bounding procedures, BBI identifies optimal poli-

cies for problem instances orders of magnitude larger than what is tractable with conventional

backward induction.
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1 Introduction

Dynamic programs (DPs) model decisions in sequence and in the face of uncertainty. Such prob-

lems are found in many domains, including business, engineering, the sciences, and health care.

When outcomes are not probabilistic, or when distributional information is not readily available,

uncertainty is normally modeled as a set of scenarios. This leads to a max-min DP whose objec-

tive is to identify a decision policy that maximizes the worst-case reward across the scenario set

(Bertsekas, 2017, ch. 1.6). In contrast to stochastic DPs, which enjoy a growing collection of meth-

ods to design policies (Bertsekas, 2019a; Sutton and Barto, 2020; Powell, 2022) and dual bounds

(Adelman and Mersereau, 2008; Brown et al., 2010; Brown and Smith, 2014; Ye et al., 2018; Bal-

seiro and Brown, 2019), max-min DPs have received relatively little attention (Bertsekas, 2022).

Indeed, despite the prevalence of sequential decision problems, solution methods for max-min DPs

are limited.

Backward induction is the standard methodology for solving max-min DPs with finite horizons,

state spaces, action spaces, and scenario sets (Bertsekas, 2017, ch. 1.6). It suffers from the so-

called “curse of dimensionality.” The effort required to execute the procedure depends on the size

of the state space, which grows exponentially with the number of state variables. In this paper,

we develop a bounded backward induction (BBI) procedure that uses upper and lower bounds

on rewards-to-go to curb exponential growth by eliminating suboptimal decisions. It shifts the

problem of dimensionality to the task of developing strong and tractable bounds.

We propose a dual bounding technique that reduces the uncertainty faced by the decision maker.

It draws on the notions of partial information relaxations in stochastic DPs (Brown et al., 2010) and

refinement chains in multistage stochastic programs (Maggioni and Pflug, 2016). The technique

leads to a family of dual bounds that vary in strength and in the computational effort required to

obtain them. Policies are recovered by embedding dual bounds in a lookahead procedure. The

approach leads to a policy performance guarantee that connects lower bounds, upper bounds, and

the optimal policy value across consecutive stages of the DP. A major deterrent to solving max-min

DPs is the optimization required to assess the value of a policy. This is in contrast to stochastic DPs,

where expected policy values are easily estimated via simulation. For budget-style scenario sets,

we partially characterize optimal solutions to the policy evaluation problem. The result reduces the
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effort required to evaluate policies and to calculate dual bounds. Together, dual bounds and policy

values facilitate BBI.

Our computational experience makes a compelling case for BBI. We use it to identify optimal

policies for a media selection problem with yield uncertainty. In this problem, audience exposure

is reduced whenever purchased spots are randomly bumped. The objective is to maximize worst-

case audience exposure subject to spot limits and a budget constraint. The problem is of significant

practical interest, but can be difficult to solve with conventional backward induction. Using our

general methods for upper and lower bounds, BBI solves max-min DP instances orders of magni-

tude larger than what is tractable with conventional backward induction. This is notable because

our bounding methods are independent of the problem. Results demonstrate how stronger bounds

reduce the dimensionality of BBI, but require more computational effort. We also highlight the

benefits of our policy performance guarantees and show how our analysis of budget scenario sets

can simplify computation. These results point toward BBI as a useful solution methodology for

max-min DPs.

The paper’s contributions are broad. BBI is a general framework for solving max-min DPs

with finite horizons, state spaces, action spaces, and scenario sets. By itself, however, BBI is not

fully operational. It requires the specification of upper and lower bounds on rewards-to-go. The

dual bounds, policies, and performance guarantee are valid for any max-min DP, and our analysis

of budget-style scenario sets is widely applicable. Indeed, these results are contributions in and of

themselves. But using our bounds is not the only way to implement BBI. For example, the field of

reinforcement learning offers many techniques to obtain policies. Additionally, problem-specific

analyses may lead to specialized insights for dual bound generation. Our hope is that the general

methodologies developed in this paper will facilitate more widespread use of max-min DPs to

address sequential decision problems.

The paper proceeds as follows. In §2, we review related literature. We formalize a max-min

DP model in §3. We introduce BBI in §4. Dual bounds are developed in §5. In §6, we discuss

lookahead policies. In §7, we examine budget scenarios. In §8, we illustrate BBI via application

to a media selection problem. We conclude the paper in §9.
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2 Related Literature

Max-min DPs and related concepts cut across several areas. Bertsekas (2019b) and Bertsekas

(2021) represent the state of the art in max-min DP methodology. They develop a policy iteration

procedure to solve robust shortest path problems, where the horizon is potentially infinite. While

these papers establish vital theory, their methods face the familiar “curse of dimensionality.” For

max-min DPs with a finite horizon, BBI offers a more tractable alternative.

Max-min DPs arise in adverserial games, such as chess. Here, the popular alpha-beta pruning

technique uses notions of bounds to improve the minimax algorithm. As part of a depth-first

search, the procedure tracks the best value obtained so far by each player. These values can be

used to reduce the size of the search tree by up to half, in the best case (Pearl, 1980, 1982). In

contrast, BBI does not require depth-first search, our theory works with general bounds, and we

observe substantially larger reductions in dimensionality.

DPs also model zero-sum games with two players and a dynamic system. Here, the problem of

optimal decision making may be modeled as a max-min DP for one player and a min-max DP for

the other. The typical aim is to leverage circumstances where the value of the max-min problem is

equal to the value of the min-max problem. In general, these values are usually different (Bertsekas,

2019a). Further, BBI does not require that they be equal.

The idea of optimizing across a set of scenarios is also fundamental to robust optimization

(Delage and Iancu, 2015). Though much of the literature in this area centers on static decision

policies, adjustable robust optimization seeks dynamic decisions in response to uncertainty. Al-

though Shapiro (2011) connects adjustable robust optimization with max-min DPs, the field’s fo-

cus on tractability typically restricts the form of decision rules, e.g., to affine or piecewise constant

functions (Bertsimas and Brown, 2011). BBI does not require that decision rules conform to a

particular shape, and thus BBI may identify better policies. Indeed, the current limitations of

adjustable robust optimization are a motivation for the research in this paper.

Decision making via a max-min criterion arises in two additional contexts. Stochastic games

are similar to max-min DPs, except the environment changes probabilistically at each stage (Haugh

and Wang, 2015; Bertsekas, 2021). In robust DPs, policies are assessed as the worst-case expected

value across uncertain payoff parameters and transition probabilities (Iyengar, 2005; Nilim and
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El Ghaoui, 2005; Xu and Mannor, 2006; Delage and Mannor, 2010; Goyal and Grand-Clément,

2023). In both cases, the decision maker has access to distributional information, even if that

information is ambiguous. In this paper, we treat the situation where uncertainty is described only

as a set of scenarios (Bertsekas, 2017, ch. 1.6).

3 Model

We consider max-min DPs within the framework of Bertsekas (2017, ch. 1.6). Decisions are made

across a finite horizon at epochs t “ 1, . . . , T . Epoch t marks the beginning of period t at which

time the system occupies state st and the decision maker chooses an action xt from the finite

set of actions Xtpstq available in state st. Following action selection, outcome wt in uncertainty

set Wtpst, xtq is observed. The decision maker faces uncertainty in the form of a finite scenario

set W . Each scenario w “ pw1, . . . , wT q in W is a trajectory of possible outcomes across all

epochs. In state st, the set of possible scenarios is Wtpstq. Uncertainty set Wtpst, xtq consists

of period-t outcomes in Wtpstq that may result from selecting action xt in state st. The reward

rtpst, xt, wtq earned in period t is a function of the state, selected action, and observed outcome. A

transition from state st in epoch t to state st`1 “ Spst, xt, wtq in epoch t ` 1 depends on the same.

Reward rT`1psT`1q is accrued in terminal state sT`1. A policy π is a sequence of decision rules

pµπ
1 , . . . , µ

π
T q where each rule µπ

t pstq : st Ñ Xtpstq is a function that maps the current state to an

action. A policy is evaluated from state st as the worst-case reward across scenarios in Wtpstq:

Jπ
t pstq “ min

wPWtpstq

#

rT`1psT`1q `

T
ÿ

t1“t

rt1 pst1 , µπ
t1pst1q, wt1q

+

. (1)

Denote by Π the set of all policies. The value of an optimal policy from state st maximizes the

worst-case reward:

Jtpstq “ max
πPΠ

tJπ
t pstqu . (2)

We seek an optimal policy from initial state s1 with value J1ps1q.
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4 Bounded Bakward Induction

Bertsekas (2017, ch. 1.6) formalizes value functions as a recursive method to identify optimal

policies for max-min DPs. Bertsekas shows that Jtpstq may be calculated as

Vtpstq “ max
xtPXtpstq

"

min
wtPWtpst,xtq

trtpst, xt, wtq ` Vt`1pst`1qu

*

, (3)

for t “ 1, . . . , T , with VT`1 “ rT`1psT`1q. Calculating Vtpstq is accomplished in two steps.

First, a decision tree is constructed that contains every trajectory of states that might be observed

beginning from state st and ending at some final state sT`1. This is done in forward fashion by

enumerating feasible actions and outcomes to identify possible future states in each subsequent

period. Second, the value function recursion is executed on the decision tree in backward fashion:

VT`1psT`1q is calculated for each state sT`1 in period T ` 1, VT psT q is calculated for each state

sT in period T , and so on until Vtpstq is calculated for state st in period t. This two-step procedure

is the conventional backward induction algorithm for max-min DPs.

As is common in dynamic programming, the size of the decision tree in the first step can

be prohibitively large. Consequently, solving a max-min DP via backward induction may be in-

tractable. We seek to overcome this “curse of dimensionality” by using lower and upper bounds on

the rewards-to-go to identify suboptimal actions and thus significantly reduce the number of states

in the decision tree. We refer to this method of decision tree construction followed by backward

solution of the value functions as bounded backward induction (BBI).

BBI leverages two results. Let Vtpstq ď Vtpstq be a lower bound on the reward-to-go from state

st and let V tpstq ě Vtpstq be an upper bound. The first result is the straightforward observation

that if Vtpstq “ V tpstq, then the value function is sandwiched by the bounds. Because Vtpstq “

Vtpstq “ V tpstq, the reward-to-go is known and it is not necessary to extend the decision tree in

the direction of state st. Second, if Vtpstq is less than V tpstq, then Theorem 1 provides a check

on actions. Let x‹
t be an action in Xtpstq that achieves Vtpstq and let V t`1pst`1q ě Vt`1pst`1q

be an upper bound on the reward-to-go from state st`1. Theorem 1 asserts that for all outcomes

in Wtpst, x
‹
t q, the lower bound must be less than or equal to the sum of the period-t reward plus

the upper bound that ensues from action x‹
t . The result follows from the definition of the value

functions and from the existence of lower and upper bounds. It implies that in state st, for a given

action xt in Xtpstq and any outcome wt in Wtpst, xtq, if Vtpstq ą rtpst, xt, wtq ` V t`1pst`1q, then
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xt does not belong to an optimal policy. Thus, any trajectory of states that results from taking

action xt in state st may be excluded from the decision tree.

Theorem 1 (Bounds and Optimal Actions). For all wt in Wtpst, x
‹
t q, Vtpstq ď rtpst, x

‹
t , wtq `

V t`1pst`1q.

Proof.

Vtpstq ď Vtpstq (4)

“ max
xtPXtpstq

"

min
wtPWtpst,xtq

trtpst, xt, wtq ` Vt`1pst`1qu

*

(5)

“ min
wtPWtpst,x‹

t q
trtpst, x

‹
t , wtq ` Vt`1pst`1qu (6)

ď rtpst, x
‹
t , wtq ` Vt`1pst`1q, wt P Wtpst, x

‹
t q (7)

ď rtpst, x
‹
t , wtq ` V t`1pst`1q, wt P Wtpst, x

‹
t q. (8)

Equation (4) holds by assumption of a lower bound, Equation (5) holds by definition of the value

function, Equation (6) holds by the optimality of x‹
t , Equation (7) holds by minimization, and

Equation (8) holds by assumption of an upper bound.

Corollary 1 shows how Theorem 1 simplifies the optimization required to identify optimal

policies. Let X‹
t pstq “ txt P Xtpstq : Vtpstq ď rtpst, xt, wtq ` V t`1pst`1q @ wt P Wtpst, xtqu

be the actions available in state st that satisfy the condition of Theorem 1. Require decision rules

µπ
t pstq : st Ñ X‹

t pstq to map states to these actions in all periods t “ 1, . . . , T . Let Π‹ Ď Π be the

resulting subset of policies. Corollary 1 demonstrates that Jtpstq may be obtained by maximizing

over Π‹ instead of Π and that Vtpstq may be identified by maximizing over X‹
t pstq instead of

Xtpstq.

Corollary 1 (Policy and Action Selection). The value of an optimal policy beginning in state st

may be calculated as

Jtpstq “ max
πPΠ‹

tJπ
t pstqu (9)

and the associated value functions may be calculated as

Vtpstq “ max
xtPX‹

t pstq

"

min
wtPWtpst,xtq

trtpst, xt, wtq ` Vt`1pst`1qu

*

(10)

for t “ 1, . . . , T , with VT`1psT`1q “ rT`1psT`1q.
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Proof. Let Πopt “ argmaxπPΠ Jπ
t pstq be the set of optimal policies. By the construction of

Π‹, Theorem 1 guarantees that Π‹ X Πopt is nonempty. It follows that maxπPΠ‹tJπ
t pstqu “

maxπPΠtJπ
t pstqu, which establishes Equation (9). Equation (10) may be derived as in Bertsekas

(2017, ch. 1.6) by employing Theorem 1.

Algorithm 1 is a procedure to construct a decision tree to facilitate calculation of Vtpstq. It

leverages Equation (10) and checks bounds at each state. Let St1 be a set of states in period t1.

Line 1 initializes St to the current state and the set of states at all subsequent periods to the empty

set. Line 2 loops across periods, Line 3 loops through states, Line 4 checks lower and upper

bounds on the reward-to-go from state st1 , Line 5 loops over actions in X‹
t1pst1q, Line 6 loops

across outcomes in Wt1pst1 , xt1q, and Line 7 records states. The resulting decision tree may consist

of both complete and partial trajectories. A partial trajectory terminates in a state st1 such that

Vt1pst1q “ V t1pst1q. Induction across these trajectories begins at state st1 with Vt1pst1q set by the

bounds. This method of decision tree construction followed by backward solution of the value

functions yields the value of an optimal policy from state st onward. If lower and upper bounds

are strong, then Algorithm 1 can lead to considerable reductions in the size of the decision tree.

Algorithm 1 Decision tree from state st
1: St Ð tstu, St1 Ð H for t1 “ t ` 1, . . . , T ` 1

2: for t1 “ t to T do

3: for st1 P St1 do

4: if Vt1pst1q ă V t1pst1q then

5: for xt1 P X‹
t1pst1q do

6: for wt1 P Wt1pst1 , xt1q do

7: St1`1 Ð St1`1 Y tSpst1 , xt1 , wt1qu

If the value of a policy π is required, for example to calculate a lower bound, we can identify

Jπ
t pstq via classical dynamic programming: states and transitions are the same as that of the max-

min DP, actions select outcomes from uncertainty sets, and the objective is to minimize the total

reward collected by the policy. The value functions for the policy evaluation DP are obtained from

Vtpstq by fixing actions to correspond to those chosen by a policy π:

V π
t pstq “ min

wtPWtpst,µπ
t pstqq

␣

rt pst, µ
π
t pstq, wtq ` V π

t`1pst`1q
(

, (11)
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for t “ 1, . . . , T , with V π
T`1 “ rT`1psT`1q. By Puterman (1994, ch. 4.3), Jπ

t pstq “ V π
t pstq.

5 Dual Bounds

Upper bounds on the reward-to-go may be obtained by reducing the set of scenarios across which

policies are evaluated. These dual bounds, combined with the lookahead policies in the next sec-

tion, are one way to facilitate BBI. For clarity, in this section we augment our notation to indicate

the set of scenarios employed in the optimization. Let Wt Ď Wtpstq be a subset of possible sce-

narios in state st. Then, Jπ
t pst,Wtq is the value of a policy π from state st when the scenario set is

Wt and Jtpst,Wtq is the value of an optimal policy.

Theorem 2 asserts that for any subset W 1
t of Wt, the value Jπ

t pst,W
1
t q of a policy π across

W 1
t is an upper bound on the value Jπ

t pst,Wtq of the same policy across Wt. Further, the value

Jtpst,W
1
t q of an optimal policy across W 1

t is an upper bound on the value Jtpst,Wtq of an optimal

policy across Wt. The result recognizes that a subset of scenarios shrinks the feasible region of

the policy evaluation problem, thereby weakly increasing the objective value.

Theorem 2 (Dual Bounds). If W 1
t Ď Wt, then Jπ

t pst,Wtq ď Jπ
t pst,W

1
t q for any policy π and

Jtpst,Wtq ď Jtpst,W
1
t q.

Proof. If W 1
t Ď Wt, then because the feasible region is smaller, Jπ

t pst,Wtq ď Jπ
t pst,W

1
t q for any

policy π. Let π‹ “ argmaxπPΠ Jtpst,Wtq. Then,

Jt pst,Wtq “ Jπ‹

t pst,Wtq (12)

ď Jπ‹

t pst,W
1
t q (13)

ď Jt pst,W
1
t q . (14)

Equation (12) follows from the optimality of π‹. Equation (13) follows from W 1
t Ď Wt. Equa-

tion (14) holds by maximization across policies.

The first part of Theorem 2 can reduce the computation necessary to calculate the value of a pol-

icy π via dynamic programming. Consider the well-known reaching algorithm (Denardo, 2003).

Moving forward through the state-space graph from current state st toward all terminal states sT`1,

the reaching algorithm calculates the reward-so-far for each state. At stage t ă t1 ă T ` 1 of the
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graph, suppose states st1 and s̃t1 are identical and the associated scenario sets satisfy W̃t1ps̃t1q Ď

Wt1pst1q. By Theorem 2, Jπ
t1 pst1 ,Wt1pst1qq ď Jπ

t1 ps̃t1 , W̃t1ps̃t1qq. Denote the rewards-so-far by γpst1q

and γps̃t1q. If γpst1q ď γps̃t1q, then γpst1q ` Jπ
t1 pst1 ,Wt1pst1qq ď γps̃t1q ` Jπ

t1 ps̃t1 , W̃t1ps̃t1qq. Thus,

the reward collected by the trajectory through state st1 is no larger than the reward collected by the

trajectory through state s̃t1 . Consequently, any trajectories through state s̃t1 may be ignored.

The second part of Theorem 2 can reduce the computation required to calculate the value of an

optimal policy. There are many ways to construct scenario subsets. Ideally, W 1
t is chosen to yield

a dual bound that is as tight as possible. Because Wt is a subset of itself, strong duality exists in

principle, though this amounts to solving the original problem and is unhelpful in practice. Below,

we propose a family of dual bounds that navigates the trade-off between computational effort and

quality of the bound.

Let W n
t “ Wt ˆ ¨ ¨ ¨ ˆ Wt be the Cartesian product of Wt with itself n times. Each element

of W n
t is a tuple of n scenarios belonging to Wt. Let

Jn
t pst,Wtq “ min

W 1
tPWn

t

tJt pst,W
1
t qu (15)

be the smallest dual bound across all n-tuples that compose W n
t . We call Jn

t pst,Wtq the n-tuple

dual bound. As n increases, the complexity of the optimization required to obtain the bound also

increases. When n is 1, the 1-tuple dual bound is equivalent to the perfect information dual bound

where a policy is chosen in response to each scenario:

J1
t pst,Wtq “ min

wPWt

!

Jt
`

st, twu
˘

)

“ min
wPWt

#

max
πPΠ

#

rT`1psT`1q `

T
ÿ

t1“t

rt1 pst1 , µπ
t1pst1q, wtq

++

. (16)

At the other extreme, when n is the cardinality of the underlying set of trajectories, W |Wt|

t “ tWtu

and J
|Wt|

t pst,Wtq “ Jtpst,Wtq reduces to the original problem. Theorem 3 asserts that the quality

of the bound increases weakly with n. The result follows from the structure of the n-ary Cartesian

power. Given any n1 ă n, for each element of W n1

t , there exists at least one element of W n
t

that contains the same scenarios as a subset. Consequently, increasing n cannot degrade the dual

bound.

Theorem 3 (n-Tuple Dual Bounds). Jn
t pst,Wtq ď Jn1

t pst,Wtq for n1 ă n.
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Proof. Let W :
t “ argminW 1

tPWn1

t
tJtpst,W

1
t qu. By construction, there exists a W 2

t in W n
t such

that W :
t Ď W 2

t . Then,

Jn1

t pst,Wtq “ Jtpst,W
:
t q (17)

ě Jtpst,W
2
t q (18)

ě Jn
t pst,Wtq. (19)

Equation (17) follows from the optimality of W :
t . Equation (18) holds by Theorem 2. Equa-

tion (19) follows from minimization across W n
t .

6 Optimistic Lookahead Policies

In addition to serving as upper bounds, dual bounds yield optimistic lookahead policies with per-

formance guarantees. A one-step optimistic lookahead policy selects actions via an overestimate

V t`1pst`1q of the optimal policy value from state st`1. The decision rule in period t is

µπ
t pstq “ argmax

xtPXtpstq

"

min
wtPWtpst,xtq

␣

rtpst, xt, wtq ` V t`1pst`1q
(

*

, (20)

and the one-step lookahead policy π is the sequence of decision rules pµπ
1 , . . . , µ

π
T q. The value

Jπ
t pstq of the policy is a lower bound on the reward-to-go from state st. Thus, dual bounds can

facilitate both the upper and lower bounds required for BBI.

When rewards are non-negative and Jtpstq is strictly positive, the lookahead policy enjoys two

performance guarantees. A straightforward guarantee is Jπ
t pstq{Jtpstq ě Jπ

t pstq{V tpstq. From

state st, the ratio of the lookahead policy value to the optimal policy value is at least as large as the

ratio of the lookahead policy value to the upper bound. A second guarantee connects lower and

upper bounds across stages t and t ` 1. Let St`1pst, µ
π
t pstqq “ tst`1 “ Spst, µ

π
t pstq, wtq : wt P

Wtpst, µ
π
t pstqqu be the set of states at epoch t ` 1 that results from taking lookahead action µπ

t pstq

in state st. Theorem 4 asserts that if the ratio of the lookahead policy value Jπ
t`1pst`1q to the upper

bound V t`1pst`1q is greater than or equal to some ϵ ě 0 for all states st`1 in St`1pst, µ
π
t pstqq, then

the ratio of the lookahead policy value Jπ
t pstq to the optimal policy value Jtpstq is also greater than

or equal to ϵ. The result follows from overestimation of the reward-to-go in the lookahead decision

rule. BBI facilitates the calculation of both performance guarantees. When Jtpstq “ 0, all policies

have value zero.
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Theorem 4 (Performance Guarantee). When rewards are non-negative and Jtpstq ą 0,

if Jπ
t`1pst`1q{V t`1pst`1q ě ϵ for all states st`1 in St`1pst, µ

π
t pstqq, then Jπ

t pstq{Jtpstq ě ϵ.

Proof. For clarity, we denote states st`1 “ Sp¨q in period t ` 1 via the transition function. Let x‹
t

be an action in Xtpstq that achieves Vtpstq and let xt “ µπ
t pstq. Then,

Jπ
t pstq

Jtpstq
“

V π
t pstq

Vtpstq
(21)

“
minwtPWtpst,xtq

␣

rt pst, xt, wtq ` V π
t`1 pS pst, xt, wtqq

(

minwtPWtpst,x‹
t q trt pst, x‹

t , wtq ` Vt`1 pS pst, x‹
t , wtqqu

(22)

ě
minwtPWtpst,xtq

␣

rt pst, xt, wtq ` V π
t`1 pS pst, xt, wtqq

(

minwtPWtpst,x‹
t q

␣

rt pst, x‹
t , wtq ` V t`1 pS pst, x‹

t , wtqq
( (23)

ě
minwtPWtpst,xtq

␣

rt pst, xt, wtq ` V π
t`1 pS pst, xt, wtqq

(

minwtPWtpst,xtq

␣

rt pst, xt, wtq ` V t`1 pS pst, xt, wtqq
( (24)

ě
minwtPWtpst,xtq

␣

rt pst, xt, wtq ` ϵV t`1 pS pst, xt, wtqq
(

minwtPWtpst,xtq

␣

rt pst, xt, wtq ` V t`1 pS pst, xt, wtqq
( (25)

ě ϵ
minwtPWtpst,xtq

␣

rt pst, xt, wtq ` V t`1 pS pst, xt, wtqq
(

minwtPWtpst,xtq

␣

rt pst, xt, wtq ` V t`1 pS pst, xt, wtqq
( (26)

“ ϵ. (27)

Equation (21) follows from Puterman (1994, ch. 4.3) and Bertsekas (2017, ch. 1.6). Equation (22)

holds by definition. Equation (23) holds because Vt`1pst`1q ď V t`1pst`1q for any state st`1.

Equation (24) follows from decision rule (20), which associates a value with action xt at least as

large as the value tied to action x‹
t . Equation (25) follows from Puterman (1994, ch. 4.3) and from

the assumption that Jπ
t`1pst`1q{V t`1pst`1q ě ϵ for all st`1 in St`1pst, µ

π
t pstqq. Equation (26) holds

because ϵ is constant and less than or equal to one because Jπ
t`1pst`1q ď Jt`1pst`1q ď V t`1pst`1q

for any st`1. Equation (27) cancels terms.

Theorem 4 underscores the importance of good dual bounds. Smaller upper bounds at stage

t` 1 ensure a better performance guarantee from state st. This becomes evident when we take ϵ to

be the minimum ratio Jπ
t`1pst`1q{V t`1pst`1q across all states st`1 in St`1pst, µ

π
t pstqq. Equivalently,

Theorem 4 guarantees the optimality gap Jtpstq´Jπ
t pstq is at most p1{ϵ´1qJπ

t pstq. As dual bounds

and lookahead policy values approach the reward-to-go from above and below, ϵ approaches one

and the gap vanishes.
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7 Budget Scenario Sets

Budget scenario sets lead to refined methods for policy evaluation and dual bound generation, and

thus to a more tractable BBI. Budget scenario sets draw outcomes from a base set W subject to

a constraint on total uncertainty. Given a non-negative integer w, we consider base sets of the

form t´w, . . . , wu and t0, . . . , wu. The first form is used in the context of robust optimization to

represent variation across a range (Betsimas and Thiele, 2006, ch. 3.2.3). If uncertainty is modeled

to lie in ry, ys with midpoint ỹ, then the range may be discretized into 2w ` 1 equidistant points as

tỹ`wtŷ : wt P t´w, . . . , wuu, where ŷ “ py´yq{p2wq is the distance between consecutive points.

The second form is useful to represent uncertainty that unfolds in one direction. For example, if

w “ 1, then t0, 1u may be used to model binary uncertainty that either does or does not occur. In

both cases, larger outcome magnitudes represent higher levels of uncertainty.

Scenarios are constructed with respect to budget of uncertainty Γ chosen from the non-negative

integers. Each scenario in scenario set W pΓq “ tpw1, . . . , wT q P W
T

:
řT

t“1 |wt| ď Γu is a

trajectory of outcomes such that each element belongs to base set W and the sum of outcome

magnitudes across all periods does not exceed Γ. Thus, larger values of Γ increase the uncertainty

in the model up to wT , at which point Γ becomes redundant. At each period, the magnitude of

the observed outcome depletes the budget resulting in a remaining budget of uncertainty Γt`1 “

Γt´|wt|, where Γ1 “ Γ. Consequently, by maintaining Γt in the state variable, the state-st scenario

set WtpΓtq “ tw P W pΓq :
řT

t1“t |wt1 | ď Γtu consists of all scenarios in W pΓq such that the sum

of outcome magnitudes from period t forward does not exceed Γt. The state-st uncertainty set

WtpΓtq “ twt P W : |wt| ď Γtu contains all period-t outcomes in W with magnitude at most Γt.

Under the condition of non-increasing rewards, we can simplify the optimization required

to evaluate policies and to identify the value of an optimal policy. For t “ 1, . . . , T ´ 1 we

require rtpst, xt, wtq to be non-increasing in the magnitude |wt| of outcomes. We also require

rT psT , xT , wT q ` rT`1psT`1q to be non-increasing in |wT |. This models a circumstance that is nat-

ural in many contexts, that worst-case outcomes do not lead to larger rewards. Theorem 5 partially

characterizes scenarios that solve the policy evaluation problem. It asserts that there exists a sce-

nario w‹ in WtpΓtq achieving V π
t pstq such that the sum

řT
t1“t |w‹

t1 | of outcome magnitudes from

period t forward is ωpΓtq “ mintΓt, wpT ´ t ` 1qu. The quantity ωpΓtq is the largest magnitude

13



of total uncertainty that may be realized from period t forward, either the remaining budget Γt or

w multiplied by the number of remaining periods T ´ t ` 1, whichever is smaller.

Theorem 5 (Optimal Scenarios). There exists a scenario w‹ in WtpΓtq achieving V π
t pstq such that

řT
t1“t |w‹

t1 | “ ωpΓtq.

Proof. Consider the case that W “ t´w, . . . , wu. The proof is by induction. In period T , because

rT psT , µ
π
T psT q, wT q ` rT`1psT`1q is non-increasing in |wT |, V π

T psT q is achieved by setting w‹
T to

ΓT or ´ΓT if ΓT ď w, and to w or ´w if ΓT ą w. Thus, |w‹
T | “ mintΓT , wu. Assume the result

holds in periods t`1, . . . , T ´1. In period t, |wt|`
řT

t1“t`1 |w‹
t1 | “ |wt|`mintΓt´|wt|, wpT ´tqu.

When Γt ´ |wt| ă wpT ´ tq, because |wt| ď w, it follows that |wt| ` mintΓt ´ |wt|, wpT ´ tqu “

mintΓt, wpT ´ tq ` |wt|u “ mintΓt, wpT ´ t`1qu. When Γt ´ |wt| ě wpT ´ tq, because |wt| ě 0

and T ´ t ě 1, we have Γt ě Γt ´|wt| ě wpT ´ tq ě w. Thus, Γt ě w ě |wt|. Because the reward

in each period is non-increasing in |wt|, it follows that setting w‹
t1 to w or ´w for t1 “ t, . . . , T

achieves V π
t pstq. Then, |w‹

t | ` mintΓt ´ |w‹
t |, wpT ´ tqu “ w ` mintΓt ´ w,wpT ´ tqu “

mintΓt, wpT ´ t ` 1qu. When W “ t0, . . . , wu, the proof is modified as follows: In period T ,

w‹
T “ mintΓT , wu. In period t, when Γt ´ |wt| ě wpT ´ tq, w‹

t “ ¨ ¨ ¨ “ w‹
T “ w.

Theorem 5 simplifies the optimization required to evaluate policies. From state st, instead

of optimizing over scenarios whose magnitudes sum to Γt or less, we may restrict attention to

scenarios whose magnitudes sum to exactly ωpΓtq. Denote this subset of scenarios by W ‹
t pΓtq “

tw P W pΓq :
řT

t1“t |wt1 | “ ωpΓtqu, with W ‹pΓq “ W ‹
1 pΓ1q representing the subset of scenarios

in the initial state. The corresponding uncertainty set is W ‹
t pΓtq “ twt P W : ωpΓtq ´wpT ´ tq ď

|wt| ď Γtu. As in WtpΓtq, outcome magnitudes cannot exceed Γt. The lower threshold activates

when ωpΓtq exceeds wpT ´ tq. It ensures that |wt| is large enough to yield a sum of outcome

magnitudes equal to ωpΓtq. Corollary 2 confirms that Jπ
t pstq may be obtained by minimizing over

W ‹
t pΓtq instead of WtpΓtq and that V π

t pstq may be achieved by minimizing over W ‹
t pΓtq instead

of WtpΓtq. Further, Corollaries 1 and 2 may be used in tandem. It is straightforward to show that

in Equation (9), Jπ
t pstq may be calculated as in Equation (28), and that in Equation (10), the inner

minimization may be conducted across W ‹
t pΓtq. Consequently, Line 6 of Algorithm 1 may operate

on W ‹
t1 pst1 , xt1q.
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Corollary 2 (Policy Evaluation). The value of a policy π from state st may be calculated as

Jπ
t pstq “ min

wPW ‹
t pΓtq

#

rT`1psT`1q `

T
ÿ

t1“t

r pst1 , µπ
t1pst1q, wt1q

+

(28)

and the associated value functions may be calculated as

V π
t pstq “ min

wtPW ‹
t pΓtq

␣

rtpst, µ
π
t pstq, wtq ` V π

t`1pst`1q
(

, (29)

for t “ 1, . . . , T , with V π
T`1psT`1q “ rT`1psT`1q.

Proof. We first prove Equation (29). By construction, if wt1 belongs to W ‹
t1 pΓt1q for t1 “ t, . . . , T ,

then
řT

t1“t |wt1 | “ ωpΓtq. By optimizing over all such trajectories via the recursion of Equa-

tion (29), then by Theorem 5, the resulting trajectory has value V π
t pstq. Using this result, we prove

Equation (28) by induction. In period T ,

Jπ
T psT q “ V π

T psT q (30)

“ min
wT PW ‹

T pΓT q
trT psT , µ

π
T psT q, wT q ` rT`1psT`1qu (31)

“ min
wPW ‹

T pΓT q
trT psT , µ

π
T psT q, wT q ` rT`1psT`1qu . (32)

Equation (30) follows from Puterman (1994, ch. 4.3). Equation (31) holds by Equation (29).

By construction, if w belongs to W ‹
T pΓT q, then wT belongs to W ‹

T pΓT q. This establishes Equa-

tion (32). Assume the result holds in periods t ` 1, . . . , T ´ 1. In period t,

Jπ
t pstq “ V π

t pstq (33)

“ min
wtPW ‹

t pΓtq

␣

rt pst, µ
π
t pstq, wtq ` Jπ

t`1pst`1q
(

(34)

“ min
wtPW ‹

t pΓtq

$

’

&

’

%

rt pst, µ
π
t pstq, wtq

` min
wPW ‹

t`1pΓt`1q

#

rT`1psT`1q `

T
ÿ

t1“t`1

rt1 pst1 , µπ
t1 pst1q , wt1q

+

,

/

.

/

-

(35)

“ min
wPW ‹

t pΓtq

#

rT`1psT`1q `

T
ÿ

t1“t`1

rt1 pst1 , µπ
t1 pst1q , wt1q

+

. (36)

Equations (33) and (34) follow from Puterman (1994, ch. 4.3) and from Equation (29). Equa-

tion (35) holds by the induction hypothesis. By construction, if w belongs to W ‹
t`1pΓt`1 “
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Γt ´ |wt|q, then w also belongs to W ‹
t pΓtq, and thus wt belongs to W ‹

t pΓtq. This establishes

Equation (36).

Budget scenario sets also simplify the task of identifying scenario subsets for dual bound gen-

eration. Theorem 6 asserts that for any scenario subset of WtpΓtq, there exists a scenario subset of

W ‹
t pΓtq with equal cardinality resulting in a dual bound that is no larger. The result follows from

the requirement that rewards be non-increasing in the magnitude of outcomes. Thus, rather than

construct scenario subsets from WtpΓtq, we may limit attention to subsets of W ‹
t pΓtq.

Theorem 6 (Better Scenario Subsets). For any Wt Ď WtpΓtq, there exists a W ‹
t Ď W ‹

t pΓtq such

that |W ‹
t | “ |Wt| and Jtpst,W

‹
t q ď Jtpst,Wtq.

Proof. Let w be a scenario in WtpΓtq. Denote by W ‹
t pΓt,wq “ tw‹ P W ‹

t pΓtq : |w‹
t1 | ě

|wt1 |, t1 “ t, . . . , T u the set of scenarios in W ‹
t pΓtq whose outcome magnitudes are no smaller

than those of w from period t forward. By construction, W ‹
t pΓt,wq is nonempty. For each w

in Wt, choose any w‹ in W ‹
t pΓt,wq. Call this collection of scenarios W ‹

t . If the collection

consists of unique scenarios, then W ‹
t is a set. Otherwise, W ‹

t is a multiset. By construc-

tion, |W ‹
t | “ |Wt|. Select any policy π. For each w and the corresponding w‹, because re-

wards are non-increasing in outcomes, and because |wt1 | ď |w‹
t1 | for t1 “ t, . . . , T , it follows that

rT`1psT`1q `
řT

t1“t rt1pst1 , µπ
t1pst1q, w‹

t1q ď rT`1psT`1q `
řT

t1“t rt1pst1 , µπ
t1pst1q, wt1q. Because this

relationship holds for each w and the corresponding w‹, it follows that Jπ
t pst,W

‹
t q ď Jπ

t pst,Wtq.

Because this is true for all policies, it must be that Jtpst,W ‹
t q ď Jtpst,Wtq.

Corollary 3 demonstrates the utility of Theorem 6. It shows that the n-tuple dual bound built

on WtpΓtq is equivalent to the n-tuple dual bound built on W ‹
t pΓtq. Because the size of W ‹

t pΓtq

is potentially much smaller than the size of WtpΓtq, the number of scenario subsets that can be

constructed from W ‹
t pΓtq may be significantly less than the number that can be composed from

WtpΓtq. Consequently, the effort required to calculate the n-tuple dual bound is reduced.

Corollary 3 (Simplified n-Tuple Dual Bounds). Jn
t pst,WtpΓtqq “ Jn

t pst,W
‹
t pΓtqq.

Proof.

Jn
t pst,WtpΓtqq “ min

WtPrWtpΓtqsn
tJtpst,Wtqu (37)
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“ min
WtPrW ‹

t pΓtqsnYprWtpΓtqsnzrW ‹
t pΓtqsnq

tJtpst,Wtqu (38)

“ min
WtPrW ‹

t pΓtqsn
tJtpst,Wtqu (39)

“ Jn
t pst,W

‹
t pΓtqq. (40)

Equations (37) and (40) hold by definition. Equation (38) follows from WtpΓtq “ W ‹
t pΓtq Y

pWtpΓtqzW ‹
t pΓtqq and the distributive property of the Cartesian product. By Theorem 6, for each

scenario subset in rWtpΓtqsnzrW ‹
t pΓtqsn, there exists a scenario subset in rW ‹

t pΓtqsn with an

objective value that is no larger. This establishes Equation (39).

8 Application to Media Selection

We illustrate BBI via an application to media selection. The problem is the classical task of allocat-

ing limited budget funds to purchase media spots with the aim of maximizing audience exposure,

but with an explicit focus on yield uncertainty. At each epoch, the decision maker purchases spots

for advertisement during the current period and across future periods. Uncertainty, in the form of

bumped media spots, erases any exposure that would have been captured via spots purchased for a

given period. The objective is to identify a policy that maximizes worst-case exposure subject to

spot limits and a budget constraint. This criterion is especially suitable for infrequent or limited-

time media campaigns, where protection against worst-case bump outcomes is advantageous. The

problem is of significant practical interest, but can be difficult to solve with conventional backward

induction.

The linear program model of media selection that appears in many introductory management

science textbooks stems from Wilson (1962). Little and Lodish (1969), Zufryden (1975), and

Srinivasan (1976) bring more realism to the domain by incorporating diminishing returns into the

exposure metric, by choosing cost functions that allow for quantity discounts, and by considering

how the timing of ads might impact exposure. These nonlinear models were intractable at the

time, however, and the authors resort to simple heuristic techniques to identify feasible policies.

The ensuing literature explores various approaches to the problem of media selection including

portfolio theory (De Kluyver, 1980), analytical hierarchy (Kwak et al., 2005), and data envelop-

ment analysis (Saen, 2011). Yet, the extant literature does not consider the issue of sequential
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decision making as a means of responding to uncertainty. The example in this section fills this

gap. Our dynamic model and solution via BBI improve on the static models and heuristic solution

methods that dominate the literature.

Our formulation employs budget scenarios to model the possibility of bumped media spots.

The base set is W “ t0, 1u, with w “ 1. Outcome wt “ 1 represents the event that spots

purchased for advertisement in period t are bumped. Outcome wt “ 0 represents the event that

spots are not bumped. The state at epoch t is st “ pbt, p,Γtq, where bt is the remaining budget,

p “ pppt1t2qTt1“1qTt2“t1 tracks the number of spots purchased in each period t1 “ 1, . . . , T for adver-

tisement in period t2 “ t1, . . . , T , and Γt is the remaining budget of uncertainty. In initial state s1,

the budget is b1, all elements of p are zero, and Γ1 “ Γ. During period t, the decision maker may

purchase spots for the current period and for any future period from a given media outlet. The cost

of purchasing spots during period t for advertisement during period t1 ě t is ctt1p¨q. The media

outlet places a limit lt on the total number of spots that may be purchased for advertisement during

period t. An action xt “ pxtt1qTt1“1 is the number of spots purchased in period t for advertisement

during the current period and all remaining periods. The set of actions available in state st is

Xtpstq “

"

xt P ZT
ě0 : (41)

T
ÿ

t1“t

ctt1pxtt1q ď bt, (42)

xtt1 `

t´1
ÿ

t2“1

pt2t1 ď lt1 for t1
“ t, . . . , T, (43)

xtt1 “ 0 for t1
“ 1, . . . , t ´ 1

*

, (44)

where Equation (41) restricts actions to the set of non-negative integer vectors with T elements,

Equation (42) requires total cost to be no larger than the remaining budget, Equation (43) imple-

ments the spot limit, and Equation (44) disallows the purchase of spots for advertisement in the

past. Audience exposure for spots that run during period t is etp¨q. The reward in period t is

rtpst, xt, wtq “ p1 ´ wtqetpxtt `
řt´1

t1“1 pt1tq. If wt “ 0, then spots air and audience exposure is de-

termined by the exposure function and the number of spots slotted for advertisement in the current

period. If wt “ 1, then spots are bumped and exposure is zero. The transition to state st`1 adjusts

p to reflect purchases made by the selected action: ptt1 “ ptt1 ` xtt1 for t1 “ t, . . . , T . Then, the
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remaining budget is updated by subtracting the cost of purchases and adding any refund due to a

bump: bt`1 “ bt ´
řT

t1“t ctt1pxtt1q `wt

řt
t1“1 ct1tppt1tq. Finally, the remaining budget of uncertainty

is updated as Γt`1 “ Γt ´ wt. A terminal state sT`1 is any state that follows action selection and

outcome observation in period T . For all terminal states, rT`1psT`1q “ 0.

In our numerical experiments, we consider values for horizon T equal to 5, 6, 7, and 8 periods.

We examine values for budget of uncertainty Γ equal to 1, 2, and 3. The initial budget is b1 “

$50,000. Given these parameters, problem instances are generated by randomly setting costs,

exposure values, and spot limits. The cost ctt1p¨q of purchasing spots is the sum of a base price

for each spot adjusted by a quantity discount. The base price varies linearly between minimum

and maximum price points as a decreasing function of the number of periods between purchase

and advertisement. The minimum and maximum price points are selected randomly as dollar

amounts between $3,000 and $7,000 and between $7,001 and $12,000, respectively. Randomly

selected quantity discounts may decrease the price of each additional spot by up to 10 percent. The

exposure function etp¨q diminishes returns via a geometric sequence. The scale factor is 1 and the

common ratio is a randomly selected number between 0.95 and 1. The spot limit lt for each period

is a randomly selected integer between 1 and 3. These functional forms and parameter values are

drawn from conversations with Ken Allgeyer, Vice President and General Sales Manager at Fox

Sports Midwest (personal communication, 9 June 2017). We use n-tuple dual bounds to construct

lookahead policies and to facilitate BBI. We explore values for n equal to 1, 2, and 3. Methods are

implemented in C++ and executed on a heterogeneous computing cluster.

First, we explore the computational limits of BBI and compare it to conventional backward

induction. We randomly generate 10 sets of costs, exposures, and spot limits. We pair these pa-

rameters with budget scenario sets W pΓq and attempt to execute conventional backward induction.

We also pair these parameters with budget scenario sets W ‹pΓq and attempt to execute BBI with

1-tuple, 2-tuple, and 3-tuple dual bounds and lookahead policies. Table 1 displays the results. For

each combination of T and Γ, the table shows the average size of the decision tree for each method

along with the average number of CPU seconds required to build and solve the tree.

The figures in Table 1 make a compelling case for BBI. When T is 5, conventional backward

induction is tractable and we can make a direct comparison among all methods. As Γ increases

from 1 to 3, the additional scenarios result in a conventional decision tree that grows on average
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Table 1: Bounded Backward Induction
Backward Induction Bounded Backward Induction

1-tuple 2-tuple 3-tuple

T Γ size cpu size cpu size cpu size cpu

5 1 176,248 1 475 1 5 1 1 1

5 2 505,275 1 74 1 1 2 1 4

5 3 853,331 2 1 1 1 3 1 5

6 1 — — 3,350 12 1 13 1 19

6 2 — — 5,491 37 7 126 6 393

6 3 — — 843 34 1 215 1 782

7 1 — — 28,092 291 3 410 — —

7 2 — — 95,000 1,064 488 12,403 — —

7 3 — — 148,114 3,230 548 28,527 — —

8 1 — — 194,941 3,624 — — — —

8 2 — — 869,179 16,302 — — — —

8 3 — — 1,380,354 28,981 — — — —

nearly five times from just over 176K states to just over 853K states. Sizes vary widely with

the number of feasible actions, which depend on the randomly generated cost structure and spot

limits. In one instance, the size of the tree is nearly 2.5M. Even at this size, computing time is small

and memory usage is manageable. Impressively, BBI reduces decision tree sizes from millions to

several hundred, to less than a hundred, to less than ten, and in many cases to only one. As n

increases, the reduction is more pronounced and computing time is larger. Although BBI requires

more computing time relative to conventional backward induction when T is 5, BBI consumes less

memory. Indeed, when T increases to 6, the size of the conventional decision tree grows so large

that it is difficult to store in memory and conventional backward induction becomes intractable. In

contrast, BBI takes these problem instances in stride. The procedure is tractable with 1-tuple, 2-

tuple, and 3-tuple dual bounds and lookahead policies. Though larger values of n yield the smallest

decision trees, in most cases they require substantially more computing time. When T increases

to 7, BBI with 1-tuple and 2-tuple dual bounds and lookahead policies is tractable. However, the

computing time required with 3-tuple dual bounds and policies is prohibitively large. Similarly,
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when T increases to 8, the computing time for BBI with 2-tuple dual bounds and lookahead policies

becomes excessive. Yet, BBI with 1-tuple dual bounds and lookahead policies still delivers optimal

policies. The procedure appears to reach its computational limits here. When Γ is 3, the average

decision tree size is just over 1.3M and the average CPU requirement is nearly 30K seconds. For

some instances, however, the size is nearly 6.5M and the computing time surpasses 77K seconds, or

nearly 22 hours. To go further may require additional computing resources, problem-specific lower

and upper bounds, or both. Fortunately, a horizon of T equal to 8 is sufficient for many limited-

time media campaigns, e.g., weekly decisions on spot purchases across two months leading up to

the release of a new product.

Next, we examine the performance guarantees afforded to lookahead policies. Let π be the

lookahead policy built on the n-tuple dual bound. Let ϵ “ mintJπ
2 ps2q{Jn

2 ps2,W
‹
2 pΓ2qq : s2 P

S2ps1, µ
π
1 ps1qqu be the smallest ratio of lookahead policy value to dual bound over all immediate

successors of the initial state. By construction, ϵ satisfies the condition of Theorem 4, and thus we

know that the ratio Jπ
1 ps1q{J1ps1q of lookahead policy value to optimal policy value is at least as

large as ϵ. We track ϵ for each initial state across all executions of BBI required to assemble the

figures in Table 1. We also track the ratio Jπ
1 ps1q{Jn

1 ps1,W
‹pΓqq of lookahead policy value to dual

bound from the initial state. Both performance guarantees for the lookahead policy are byproducts

of the decision tree construction procedure outlined in Algorithm 1. Figure 1 displays the results.

For all problem instances and policies associated with a particular value of horizon T , the figure

shows average values of each performance guarantee individually as well as average values of the

maximum of the two. The maximum represents the best performance guarantee that BBI can offer

from the initial state.

Across all values of horizon T , Figure 1 shows that, on average, ϵ is 0.740, the ratio Jπ
1 ps1q{J1ps1q

is 0.813, and the maximum of the two is 0.826. In the world of worst-case guarantees, these num-

bers are very strong. If a full execution of BBI is intractable, then the decision maker may rely

on these guarantees as measures of goodness for their policies. Further, the maximum of the two

ratios improves on either ratio in isolation. On average, the maximum is 0.086 percentage points

higher than ϵ and 0.013 percentage points above Jπ
1 ps1q{J1ps1q. Thus, the value of Theorem 4 is

not that it provides a superior performance guarantee across the board. The value is that it connects

lower and dual bounds between one stage and the next, and that this connection leads to a better
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Figure 1: Lookahead Policy Performance Guarantees

performance guarantee in some cases.

Next, we study how n-tuple dual bounds affect BBI. We fix the horizon T to 5 periods and

randomly generate 10 sets of costs, exposures, and spot limits. We pair these parameters with

scenario sets W pΓq and W ‹pΓq. For each of the resulting problem instances, we calculate the

n-tuple dual bounds. Figure 2 displays the results. Each chart in the top row is a relative frequency

histogram. For each n-tuple dual bound Jn
1 ps1,W pΓqq and Jn

1 ps1,W
‹pΓqq, the charts display the

proportion of n-tuples W 1
1 in rW pΓqsn and in rW ‹pΓqsn whose dual bound values J1ps1,W

1
1q

equal the value of an optimal policy J1ps1q, the proportion whose dual bound values are between

J1ps1q and 20 percent above J1ps1q, the proportion whose dual bound values are between 20 and

40 percent above J1ps1q, and so on. Each histogram is an average across all problem instances

with scenario set W pΓq or scenario set W ‹pΓq. The first bar chart in the bottom row displays the

average number of n-tuples |rW pΓqsn| and |rW ‹pΓqsn| associated with each n-tuple dual bound.

The second chart shows the average number of CPU seconds required to calculate each n-tuple

dual bound. The third chart depicts the average number of CPU seconds required to calculate the

dual bound J1ps1,W
1
1q for each n-tuple W 1

1 in rW pΓqsn and rW ‹pΓqsn. The fourth chart reports

the average size of the decision trees required to calculate each J1ps1,W
1
1q. Across all four charts

in the bottom row, each bar represents an average over all problem instances with scenario set
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Figure 2: n-Tuple Dual Bounds

W pΓq or scenario set W ‹pΓq.

The results portrayed in Figure 2 illustrate the benefit of composing n-tuples from W ‹pΓq.

They also characterize the trade-off between the quality of n-tuple dual bounds and the computa-

tional effort required to calculate them. The histograms in the top row indicate that as n increases,

the distributions of dual bounds skew toward the optimal policy value. Then, for a given value of

n, the distribution of dual bounds is more skewed toward the optimal policy value for n-tuples in

rW ‹pΓqsn than for those in rW pΓqsn. Thus, the likelihood of identifying a better dual bound is

higher when n is larger and when n-tuples are composed of scenarios in W ‹pΓq. The first chart

in the bottom row shows that the average number of n-tuples in rW ‹pΓqsn is far fewer than the

average number in rW pΓqsn. Accordingly, the second chart indicates a substantial decrease in the

average computation time required to calculate Jn
1 ps1,W

‹pΓqq versus Jn
1 ps1,W pΓqq. However, as

shown in the third chart, the average number of CPU seconds needed to identify each dual bound

J1ps1,W
1
1q is higher for n-tuples W 1

1 in rW ‹pΓqsn. Recall that, by construction, each scenario in

these n-tuples contains outcomes whose magnitudes exhaust as much of the remaining budget of

uncertainty as possible. Consequently, the associated decision trees are larger, as seen in the fourth

chart, and the backward induction procedure takes longer. Thus, although more time is required to

treat each n-tuple in rW ‹pΓqsn, the total time required to calculate Jn
1 ps1,W

‹pΓqq is smaller than

the total time required to calculate Jn
1 ps1,W pΓqq. In short, the primary takeaways from Figure 2
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are that n-tuples should be composed from W ‹pΓq (see Theorem 5, Corollary 2, Theorem 6, and

Corollary 3) and that larger values of n yield stronger dual bounds (see Theorem 3), but at the cost

of higher computation time.

Finally, we investigate the impact of our theoretical results on policy evaluation. Across the

same problem instances with T fixed at 5, we consider lookahead policies π built on 1-tuple dual

bounds. We use the reaching algorithm described in §5 to identify policy values Jπ
1 ps1q from

initial states. We track the size of the policy evaluation tree across four cases. The first case fully

enumerates all states in the tree for problem instances with scenario set W pΓq. The second case

applies the first part of Theorem 2, as described in §5, to problem instances with scenario set

W pΓq. Given two sets of budget scenarios WtpΓtq and WtpΓ
1
tq, the first is a subset of the second

if Γt ď Γ1
t. The third case applies Corollary 2 by reducing the scenario set to W ‹pΓq. The fourth

case employs Theorem 2 and Corollary 2 in tandem. Figure 3 displays the size of the tree in the

latter three cases as a percent of the size in the first case. Each bar represents the average percent

across the corresponding problem instances for the displayed value of Γ.

The results shown in Figure 3 indicate that both Theorem 2 and Corollary 2 can in isolation

reduce the size of the policy evaluation decision tree. However, the methods are most beneficial

when used together. This is particularly true as Γ increases. Indeed, when Γ is 3, the average
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size of the decision tree is reduced by more than half, from 56 states to 27 states, on average.

Whether the reduction in size is small or large, the computational overhead required to implement

these results is negligible. This is notable because BBI builds a decision tree across all policies by

examining lower bounds at every candidate state. Because the number of such states can be very

large, any reductions to the size of the policy evaluation decision tree can substantially lessen total

computation time.

In summary, the application of BBI to media selection illustrates all the theoretical work in

the paper. Theorem 1 and Corollary 1 eliminate suboptimal actions. Theorem 2 provides a basis

for dual bounds via scenario subsets and Theorem 3 supplies a general methodology for n-tuple

dual bounds. Theorem 4 establishes a second performance guarantee for lookahead policies. The-

orem 5 and Corollary 2 significantly reduce the number of budget scenarios. Then, Theorem 6

transfers this benefit to dual problems with budget scenarios and Corollary 3 shows an applica-

tion to n-tuple dual bounds. Collectively, these theoretical results make a practical contribution

by identifying optimal policies for problem instances whose sizes are orders of magnitude beyond

what conventional backward induction can tractably manage. These results point to BBI as a useful

solution methodology for media selection problems and for max-min DPs in general.

9 Conclusion

The utility of conventional backward induction is limited by the curse of dimensionality. For

many max-min DPs of practical interest, conventional backward induction is an intractable solution

method. BBI shifts the problem of dimensionality to the task of developing strong and tractable

bounds. The upper and lower bounds we develop are applicable to general max-min DPs. The

n-tuple dual bounds facilitate a tradeoff between quality and computation, the ensuing lookahead

policies come with performance guarantees, and our analysis of budget scenario sets eases the tasks

of policy evaluation and dual bound calculation. Using our bounds, BBI solves media selection

problems orders of magnitude larger than what is tractable with conventional backward induction.

This success points toward BBI as a useful solution methodology for max-min DPs.

The generality of BBI offers opportunities to explore and expand the method. Dual bounds

and policies can be mixed and matched, for example, by moving from one n-tuple to another
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during various parts of decision tree construction. This could provide some flexibility for a given

computational budget by placing better bounds where they are most helpful. Or, instead of leaning

on the bounds proposed in this paper, new bounds could be developed. BBI does not require

that bounds be general. The theory permits problem-specific bounds. For instance, a variety of

reinforcement learning techniques and functional approximations, tailored to a given problem,

could yield improvements in bound quality and computation time, thereby facilitating a smaller

decision tree with fewer demands on computational resources. In this sense, BBI is a framework

that can be customized.

Beyond working within our analysis of BBI, it may be possible to extend it. While budget

scenario sets offer certain methodological advantages, they are not the only way to model uncer-

tainty. Other types of scenario sets should be explored. Additionally, although the BBI framework

requires a finite horizon, it may be possible to incorporate bounds into a solution methodology for

infinite horizon problems. Finally, it may be possible to adapt the general notion of eliminating

suboptimal actions via bounds to a stochastic DP framework.
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