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Abstract

Do you remember your first video game console? We remember ours. Decades ago, they

provided hours of entertainment. Now, we have repurposed them to solve dynamic and

stochastic optimization problems. With deep reinforcement learning methods posting

superhuman performance on a wide range of Atari games, we consider the task of

representing a classic logistics problem as a game. Then, we train agents to play

it. We consider several game designs for the vehicle routing problem with stochastic

requests. We show how various design features impact agents’ performance, including

perspective, field of view, and minimaps. With the right game design, general purpose

Atari agents outperform optimization-based benchmarks, especially as problem size

grows. Our work points to the representation of dynamic and stochastic optimization

problems via games as a promising research direction.

1 Prologue

Several of the authors are old enough to remember their very own Atari 2600. A joystick

with an orange button, a black game console with a few manual switches, and a cable that

connected to a 1980s television. This magical device transported us to pixelated worlds where

we spent many blissful hours playing classics like Pong, Centipede, and Frogger. Thirty-five
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years later, during a time when gamers connect their Xbox consoles to LCDs, our childhood

memories are finding new life. With the original Atari games serving as benchmarks for deep

reinforcement learning (DRL) methods, we set out to bring our past into our present. As

adults, we spend our professional lives wading through our own pixelated world of integer

variables, discrete state spaces, and discontinuous functions. Instead of proving theorems

and devising algorithms to solve dynamic and stochastic optimization problems, what if we

played them like a video game? Can we map one pixelated world to another and leverage

DRL to crack the code? This paper is about our quest to defeat one such problem, with

only a vintage joystick and modern AI.

DRL methods have been applied to a variety of tasks involving sequential decisions and

uncertainty. These tasks span the domains of healthcare (Liu et al., 2017), image recognition

(Choi et al., 2018), and autonomous driving (Sallab et al., 2017), to name a few. In the

operational realm, members of our team have applied DRL to dynamic taxi dispatching

(Kullman et al., 2022), Amazon has used DRL for online bin packing, newsvendor, and

vehicle routing problems (Balaji et al., 2019), and others have applied it to production

scheduling (Palombarini and Mart́ınez, 2022; Xinquan and Xuefeng, 2023). Perhaps the most

well-known application is to games, where DRL has achieved superhuman performance in

chess (Silver et al., 2018), Go (Silver et al., 2018), Doom (Lample and Chaplot, 2017), Texas

Hold’em Poker (Heinrich and Silver, 2016), and StarCraft II (Vinyals et al., 2019). Notably,

the architecture of Mnih et al. (2015) outperforms humans on the majority of 49 Atari

games. This is achieved despite differences across the suite of games, such as appearance,

goals, rewards, and actions. Indeed, it was the success of Mnih et al. (2015) that led to our

reflection on whether similar DRL methods might perform comparably on any game with a

related format. Games, like dynamic and stochastic optimization problems, are challenging

because they involve long sequences of decisions in the face of uncertain outcomes. Thus,

one also wonders if game-based representations of such problems, paired with DRL, can lead

to viable solution methodologies. The possibility of bridging these two worlds motivates this

paper.

To test our hypothesis, we consider how to gamify the vehicle routing problem with

stochastic requests (VRPSR). The VRPSR is an important problem in modern logistics. It

is the problem of dynamically routing a vehicle to service customer requests that occur at

random times across an operating horizon and in random places within a service area. The

objective is to identify a routing policy that maximizes the expected number of serviced

requests. The VRPSR models a range of operational scenarios, including those faced by

service technicians, meal delivery services, and couriers. Identifying an optimal VRPSR

policy is challenging, especially for instances of any practical size. If the VRPSR can be
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Figure 1: The VRPSR Game World

represented as a game, and if DRL can provide a useful solution methodology, then this

would be a notable achievement. Rather than relying on tailored optimization routines to

aid online decision making, academics and practitioners alike could instead turn to a more

general DRL method.

We explore the benefits and drawbacks of various designs for the VRPSR game. Each

design presents the player with a different view of the game world shown in Figure 1, and

thus provides different input to the DRL algorithm. First, we consider perspective, whether

to reposition the vehicle in response to joystick-style movements, or to fix the vehicle in the

center of the view and reposition the playable area. Second, we investigate wide and narrow

fields of vision, which determine whether the entire playable area is visible to the player at

once, or only some portion of it. Third, we examine the impact of including a minimap in

the view. When the player’s field of vision is narrow, this feature provides the player with a

downscaled overview of the entire playable area.

We train agents on each view via the DRL method of Bellemare et al. (2017), which builds

on the success of Mnih et al. (2015), then execute them across various VRPSR problem

instances. Computational experiments yield four conclusions. First, fixing the vehicle in the

center of the view leads to better performance than moving the vehicle within a static view.

The improvement follows from an agent’s ability to associate each pixel in the view with

movement in a particular direction, rather than with a function of the vehicle’s location in a

static view. Second, a narrow field of vision is helpful for larger playable areas. This feature

shifts the problem of learning across a larger playable area from an issue of more complex

input to one of additional exploration. Third, including a minimap in the view further

improves agent performance. The two features in tandem combine local resolution across a

narrow field of vision with a global approximation of the entire playable area. Fourth, in

comparison to optimization-based benchmarks, DRL agents perform better as the expected
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number of requests increases. Because the benchmarks make computations on the fly, the

requirement to make timely decisions limits their ability to select good actions. In contrast,

following offline training, DRL agents require little time to make online decisions.

Though some of our game designs allow agents to outperform benchmark policies, our

aim is not to develop a state-of-the-art procedure. Rather, our contribution is a connection

between the seemingly disparate worlds of video games and logistics. More generally, our

work points to the representation of dynamic and stochastic optimization problems via games

as a promising research direction.

The paper proceeds as follows. In §2, we review related literature. In §3, we detail the

game setup and describe four game views. In §4, we describe the DRL training procedure.

In §5, we present benchmark methods. In §6, we conduct computational experiments and

discuss their implications. We conclude the paper in §7.

2 Earlier Versions

It seems fitting that the start of VRPSR research coincides with the release of the Atari

2600. The work of Psaraftis (1980) reoptimizes a route through pending requests whenever

a new request is made, then uses the route to direct vehicle movement. Just like the Atari

influenced video game design for years to come, Psaraftis inspired similar research across

several decades. Gendreau et al. (1999), Ichoua et al. (2000), van Hemert and La Poutré

(2004), Gendreau et al. (2006), Ichoua et al. (2006), Branchini et al. (2009), and Ferrucci

et al. (2013) all present variations on the original idea of Psaraftis. Innovations center on

more advanced routing heuristics. While these methods exploit advances in deterministic

routing, for the most part they do not explicitly consider future requests.

More anticipatory VRPSR decision making begins with Bent and Van Hentenryck (2004).

Rather than direct the vehicle based on reoptimization of a single route, Bent and Van

Hentenryck reoptimize a collection of routes, each of which contains a different random

sample of future requests. A consensus function then determines vehicle movement. Hvattum

et al. (2006) and Ghiani et al. (2009) proceed similarly. Concurrently, Mitrović-Minić and

Laporte (2004), Branke et al. (2005), Thomas and White III (2007), and Ghiani et al.

(2012) explore waiting strategies. These methods dynamically move and halt the vehicle in

anticipation of future requests.

The work of Meisel (2011) begins an era of VRPSR value function approximation, which

gives explicit consideration to the timing and locations of future requests. Building on Meisel

(2011), Ulmer et al. (2018a) aggregates states around time-based features, then dynamically

partitions the space as part of an approximate value iteration procedure. Ulmer et al.
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(2018b) extends these ideas to a multi-period VRPSR and Ulmer et al. (2018c) combines

them with rollout algorithms. Even though the method of Ulmer et al. (2018a) adapts to

the approximation process, it cannot revert partitioning decisions once made. The adaptive

procedure of Soeffker and Ulmer (2019) remedies this issue and yields even better value

function approximations.

More recently, VRPSR value function approximations are made via neural networks. Joe

and Lau (2020) show that neural nets can outperform the scenario-based method of Bent

and Van Hentenryck (2004) as well as an approximate value iteration procedure. In the

context of same-day delivery, Chen et al. (2022) use neural networks to learn the value of

fulfilling a request via drone versus via truck. Our approach also relies on neural network

approximations of the value function. However, in contrast to the literature, we do not

design a value function approximation for the VRPSR. Rather, we seek to design a game-

based representation of the VRPSR for a preexisting network architecture. For a more

comprehensive examination of dynamic and stochastic vehicle routing literature, see Soeffker

et al. (2022).

3 The Game World

The vehicle routing problem with stochastic requests (VRPSR) dispatches a single vehicle

to meet customer requests arriving at random times across a given operating horizon and at

random locations across a known service area. The objective is to design a dynamic routing

policy, beginning and ending at a depot, that maximizes the expected number of serviced

customers. The game world, portrayed in Figure 1, is a visual representation of the problem

description. It is composed of several elements. The playable area represents the service area,

or the portion of the game world within which the vehicle may move. Within the playable

area, the depot and requests are represented by single pixels. Customers that have requested

service are green and the depot is blue. The pixel depicting each request is invisible before

the time of request and after service. The vehicle’s location is shown by the open pixel in

the center of the pink square. The vehicle services a request by navigating its open pixel to

a customer’s position. The playable area is surrounded by a thin border. Above the border

is a rectangular time bar whose length represents the remaining time before the vehicle must

return to the depot.

The VRPSR is conventionally formulated as a Markov decision process: epochs occur

when customers are serviced and when customers request service; the state tracks time,

vehicle position, and the locations of pending requests; actions direct the vehicle to a pending

service request or to wait at the current location; rewards count the number of serviced
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Figure 2: Graphs for the traditional (top) and game (bottom) representations of the VRPSR.

customers; and transitions account for the likelihood of new requests across space and time.

Formal models for related problems may be found in Ulmer et al. (2018c) and Ulmer et al.

(2020).

Modeling the VRPSR as a game requires modifications to how policies route the vehicle

and to the conventional formulation. The operations research community typically considers

policies that move the vehicle among the edges of a complete graph G consisting of nodes

for each customer and the depot. To accommodate the pixel-by-pixel movements typical to

games, routing policies in the VRPSR game move the vehicle along the edges of a graph G′

representing the playable area. Each node in G′ is a pixel and edges connect a pixel to adja-

cent pixels, e.g., the pixels above, below, and to either side. While routing across G allows

for a variety of distance metrics (e.g., Euclidian), routing across G′ requires Manhattan-style

movements. Figure 2 depicts the VRPSR on both graphs.

A game formulation of the VRPSR modifies actions, epochs, and states. The action

space consists of at most five actions: move up, move down, move left, move right, and no

movement. If the vehicle is at the boundary of the playable area, the number of feasible

actions is fewer. In the conventional formulation, the path between any pair of nodes in G

incurs the minimum travel time. In contrast, moving from one customer to another in G′

can be accomplished via many paths. For preemptive routing policies, movement across G′

offers more flexibility than movement across G. For example, though detouring the vehicle

away from a shortest path may result in more travel time, it may also put the vehicle in

closer proximity to potential requests, thus making it possible to service additional requests

while en route to a customer. Figure 2 depicts this behavior. In the top part of the figure,

the vehicle moves directly from node A to node B through graph G. In the bottom portion,

movement toward node B through graph G′ anticipates the possibility of a request at node

C by moving toward B along a lower and longer path. Epochs reflect the additional routing

flexibility afforded by movement across G′. They occur at each moment of a discretized
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(a) (b)

(c) (d)

Figure 3: Game views for a 100-by-100 pixel playable area: (a) World View (b) Vehicle View
(c) Zoom View (d) Survey View. Zoom and Survey Views are depicted with an 84-by-84
pixel field of vision.

timeline.

The state of a VRPSR game is the player’s view of the game world at an epoch. A view

consists of the time bar plus the player’s field of vision. The player’s field of vision is the

visible portion of the playable area. We consider four views, each of which is depicted in

Figure 3. In the World View, the field of vision includes the entire playable area and the

player simply moves the vehicle within the area. In the Vehicle View, the vehicle is fixed in

the center of the field of vision and movement adjusts the position of the field of vision across

the playable area. When the field of vision is positioned away from the center of the playable

area, portions of the playable area move out of the view. The Zoom View is the Vehicle

View with a narrower field of vision, meaning portions of the playable area are obscured

even when the vehicle is positioned in the center of the playable area. To observe portions

of the playable area outside the field of vision, the vehicle must move to those regions. The

Survey View is the Zoom View plus a minimap. In this view, players see a small overview

of the playable area in the top left corner. The overview is an aggregation, where the color

of each aggregated pixel is the average color of the pixels it represents.
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Figure 4: Categorical DQN Architecture

Because each view is a different state representation, the four views constitute four dif-

ferent VRPSR games. While the World View provides a complete observation of the state

variable, the latter three views result in partial observations.

4 Our Hero

We use the categorical Deep Q-Network (DQN) approach of Bellemare et al. (2017) to train

agents for all four views of the VRPSR game. This method has demonstrated particular

success across a suite of Atari 2600 games. In contrast to classical reinforcement learning

techniques, which estimate expected Q-values, categorical DQN approximates Q-value dis-

tributions. The method builds on the celebrated DQN architecture of Mnih et al. (2015),

which employs a collection of neural network techniques. As in Mnih et al. (2015), categor-

ical DQN takes the classical ϵ-greedy approach to learning. However, instead of minimizing

squared loss between Q-values, it minimizes sample loss between distributions of Q-values.

Our network architecture is shown in Figure 4. It takes as input a game view, represented

as an array of pixels. It consists of three convolution layers and two fully connected layers.

The architecture mirrors that of Bellemare et al. (2017), with one modification. Because

each customer occupies only a single pixel, a customer’s exact location may become lost in

the convolution layers. To prevent this, in the first convolution layer we double the number

of filters and cut the stride in half. After an agent is trained, Q-value distributions are used

to make decisions by selecting an action that maximizes the expected Q-value in a given

state.

5 God Mode and Other Players

We benchmark agents’ performance against two reoptimization policies and the expected

value with perfect information (EVPI), which serves as a dual bound on the value of an

optimal policy (Brown et al., 2010). At a given state, both policies select an action by solving
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a mixed-integer linear program (MILP). The MILP seeks a route that serves a maximum

number of pending service requests. The action is movement of the vehicle toward the first

customer visited by the route. We refer to these policies as reoptimization with preemption

(ReoptWP) and reoptimization without preemption (ReoptWOP). The ReoptWP policy

solves the MILP when customers are serviced and whenever service requests are realized.

Thus, a vehicle en route to one customer can be diverted to a different customer. The

ReoptWOP policy only solves the MILP when customers are serviced, as is customary in

the VRPSR literature. This policy commits the vehicle to the selected request. ReoptWP

and ReoptWOP may be viewed as players of the VRPSR game with a World View. As

discussed in §2, solving deterministic MILPs in rolling horizon fashion to make dynamic

decisions is a common means of deriving policies from static methods. The policies provide

a sense of how classical optimization-based methods perform relative to a state-of-the-art

reinforcement learning method. As we discuss below, the same MILP can be used to obtain

the EVPI.

To formalize the MILP, let t̄ be the current time and let node n in G′ be the location of

the vehicle at time t̄. Denote by C ⊂ G′ the subset of nodes in G′ corresponding to customers

who have requested service but who have not yet been visited. Let 0 in G′ represent the

depot and denote by C̄ = C ∪ {n} ∪ {0} the set of nodes comprising customer locations,

vehicle location, and the depot. For each pair of nodes (i, j) in C̄× C̄, let dij be the duration

of the shortest travel time from i to j, where distances are Manhattan. Denote by ri the

time of the request at node i in C. Let li = T −di0 be the latest time the request at node i in

C may be serviced such that the vehicle can return to the depot by the end of the operating

horizon at time T .

Decision variables include which customers to visit and when. Let hi be 1 if the request

at node i is serviced by the route and 0 otherwise. Let yi be 1 if the request at node i is

the first request to be serviced and 0 otherwise. Let xij be 1 if the request at node j is

serviced immediately after the request at node i and 0 otherwise. Finally, let ti be the time

at which the request at node i is serviced, if it is serviced at all. Constraints require the

vehicle to begin routing from its current location, to visit customers at or after the time at

which service is requested, to visit each customer at most once, and to conclude service with

enough time to return to the depot before the end of the operating horizon.

The MILP is formulated as follows:

maximize
∑
i∈C

hi (1)

subject to
∑
i∈C

yi ≤ 1 (2)
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yj +
∑
i∈C

xij = hj, j ∈ C (3)∑
j∈C

xij ≤ hi, i ∈ C (4)

ti ≥ ri + (t̄+ dni − ri) yi, i ∈ C (5)

tj − ti ≥ rj − li + (dij − rj + li)xij, (i, j) ∈ C × C (6)

ri ≤ ti ≤ li, i ∈ C (7)

hi ∈ {0, 1}, i ∈ C (8)

yi ∈ {0, 1}, i ∈ C (9)

xij ∈ {0, 1}, (i, j) ∈ C × C (10)

The objective in Equation (1) seeks to maximize the number of serviced requests. Con-

straint (2) allows at most one request to be routed first. Constraints (3) allow each node j

in C to be routed only if j is selected for service. Constraints (4) allow departure from node

i in C only if node i is marked for service. If the request at node i in C is routed first, then

Constraints (5) require the time of service at node i to be at or after the current time plus

the travel time from the vehicle’s current location to node i. If the request at node j in C

is routed after the request at node i in C, then Constraints (6) require the time of service

at node j to be at or after the time of service at node i plus the travel time from node i to

node j. Constraints (7) ensure that service at each node i in C occurs between ri and li.

Constraints (8) and (9) mark decision variables hi and yi as binary for each i in C. Similarly,

Constraints (10) require xij to be binary for each pair of nodes in C × C.

The ReoptWP and ReoptWOP policies extract actions from feasible MILP solutions as

follows. Let i⋆ be the node in C such that yi⋆ = 1. Node i⋆ is the first request serviced by

the solution. Both ReoptWP and ReoptWOP advance the vehicle toward i⋆ on a path that

first moves horizontally and then moves vertically. If i⋆ does not exist and t̄+ dn0 < T , then

the action is to wait at n, the vehicle’s current location. Otherwise, the action moves the

vehicle along a shortest path to the depot.

The EVPI is the expected value of an optimal policy with perfect foresight of the times

and locations of service requests. If we represent a realization of requests by C and their

times by r = (ri)i∈C , then the MILP models the problem of identifying an optimal routing in

response to C and r. Denote by f(C, r) the value of this routing. The EVPI is the expected

value E[f(C, r)] across all possible realizations.
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6 Let’s Play

In this section, we conduct three sets of experiments designed to demonstrate the strengths

and weaknesses of agents trained on each of the four game views. Problem instances and

algorithmic parameters are described in § 6.1. Results are presented in § 6.2.

6.1 Loading

Across all experiments, instances are structured similar to those of Ulmer et al. (2018c).

Instances for the first set of experiments are characterized by a 20 km square service region,

a 6-hour operating horizon, and 30 expected requests. A 100-by-100 pixel playable area

represents the service region, where each pixel is 0.2 km square. Time is discretized into

750 steps, each with a duration of 0.008 hours. This leads to 749 epochs plus a final time

step that concludes service. The vehicle moves at a constant speed of 25 kph, or one pixel

per time step. The depot is located in the center of the playable area. The number and

location of requests are independent random variables. The number of customers that request

service in a given time step is Poisson distributed with rate 30/749, resulting in 30 expected

requests across the operating horizon. Each request is located in one of three areas with

likelihoods 0.25, 0.50, and 0.25, respectively. Request locations within each area follow a

bivariate normal distribution. Referencing the bottom-left corner of the playable area as the

origin, mean locations for the areas are (5 km, 5 km), (5 km, 15 km), and (15 km, 10 km),

respectively. Standard deviations for both horizontal and vertical dimensions are 1 km and

the correlation between dimensions is 0.

The second set of experiments modifies instances for the first set by increasing the res-

olution of the playable area from 100-by-100 pixels to 200-by-200 pixels. With the area of

each pixel at 0.1 km square, time is discretized into 1500 steps, each with a duration of

0.004 hours. The Poisson rate parameter is adjusted accordingly to 30/1499. The third

set of experiments alters instances from the first set by increasing the expected number of

customers from 30 to 100. All other parameters remain the same.

We use categorical DQN to train agents on VRPSR games via the World, Vehicle, Zoom,

and Survey Views. We refer to the agents by the views on which they are trained. The

field of vision for the Zoom and Survey Views is 84-by-84 pixels, the same resolution as the

images used by Mnih et al. (2015). To accelerate exploration, each training episode begins

by moving the vehicle to a random location. In the first and third sets of experiments, each

agent is trained for 50 million epochs, with episodes terminating whenever the remaining

time is such that the agent’s only feasible moves are those bringing it back to the depot. In

the second set of experiments, the number of training epochs increases to 180 million. We
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Table 1: Ray RLlib Hyperparameter Values

Parameter Value

num atoms 51
replay buffer config: capacity 1,000,000
target network update freq 8,000

lr 0.0000625
adam epsilon 0.00015

hiddens [512]
train batch size 32

exploration config: epsilon timesteps 200,000
exploration config: final epsilon 0.01

use RLlib (2024) to implement categorical DQN. It provides the pre-tuned hyperparameters

for Atari displayed in Table 1. Training is conducted in serial on Nvidia V100 GPUs.

The expected values of agents’ decisions and of each benchmark policy are estimated via

simulation. We do this by randomly generating request realizations across the operating

horizon and service area, executing the policy, recording the number of serviced requests,

then repeating a total of 250 times. The average number of serviced requests is an unbi-

ased and consistent estimator of the expected number of serviced requests. For each set of

request realizations, the ReoptWOP policy is allocated a computing budget equal to the

6-hour operating horizon. In the first and second sets of experiments, this provides up to 12

minutes to solve the MILP for each of 30 expected requests. In the third set of experiments,

ReoptWOP receives up to 3.6 minutes to solve the MILP for each of 100 expected requests.

The ReoptWP policy receives the same allocations for each MILP. If a MILP is not solved to

optimality within the allocated time, then the best feasible solution is used to direct action

selection. The EVPI is estimated via simulation across the same 250 instances. For each

realization of requests, each MILP instance is allocated 6 hours of computing time. If the

solver does not identify an optimal solution to the MILP within that time, then we use the

solver’s smallest upper bound instead. Though this may overestimate the EVPI, it is also a

dual bound on the value of an optimal policy. All MILPs are solved with Gurobi Optimizer

on Intel Xeon Gold 6148 (2.4 GHZ) CPUs. The experimental setup is summarized in Table 2.

6.2 Gameplay

The first set of experiments highlights the benefit of a Vehicle View. Figures 5 and 6 depict

the results. Figure 5 displays the performance of each agent and of the benchmarks while

Figure 6 shows the performance of each agent as a function of the number of training epochs.
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Table 2: Experimental Setup

Experiment Set 1 2 3
Expected Requests 30 30 100
Playable Area (pixels square) 100 200 100
World and Vehicle Views Field of Vision (pixels square) 100 200 100
Zoom and Survey Views Field of Vision (pixels square) 84 84 84
Training Iterations per Agent (millions) 50 180 50
ReoptWOP and ReoptWP CPU Minutes per MILP 12 12 3.6

3.4

21.9

21.8

22.3

21.0

23.7

27.7

0 30

World

Vehicle

Zoom

Survey

ReoptWOP

ReoptWP

EVPI

Expected Number of Serviced Requests

Figure 5: Performance in the 100-by-100 playable area with 30 expected requests

The expected number of serviced requests by the World Agent (3.4) is particularly low.

The Vehicle (21.9), Zoom (21.8), and Survey Agents (22.3) each demonstrate substantial

improvements over the World Agent and also outperform the ReoptWOP policy (21.0).

While these three agents perform similarly, the Survey Agent’s zoom and minimap features

together provide an edge over the Vehicle View in isolation. Figure 6 underscores these

results. While all four agents improve as the number of training epochs approaches 50

million, the World Agent lags behind the other three, and the two agents trained on the

zoom feature surpass the performance of the Vehicle Agent. Although the ReoptWP policy

(23.7) posts the best performance, the Survey Agent is not far behind. The EVPI (27.7) sits

between the expected number of requests serviced by ReoptWP and 30, the expected number

of total requests. Of the 250 instances used to calculate the EVPI, nearly 25 percent solve

to optimality within the allotted time. Across the vast majority of the remaining instances,

the solver reports optimality gaps below 20 percent.

The performance disparity between the World Agent and the Vehicle Agent points to

a Vehicle View as an important factor in modeling the VRPSR as a game. Vehicle Views

allow agents to associate each pixel in the view with specific actions, e.g., pixels in the top
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Figure 6: Training curves for the 100-by-100 playable area with 30 expected requests

half of the view require upward movement and pixels on the right side of the view require

movement to the right. In contrast, the action required to move the vehicle to the same

pixel in the World View is a function of the vehicle’s location in the view. The difference is

one of gauging value relative to the view versus value relative to the vehicle’s position in the

view. It seems that dependency on vehicle location introduces non-trivial complexity. While

it is straightforward for humans to recognize the connection between the World View and

the Vehicle Views, to the deep Q-networks that drive the categorical DQN method, Vehicle

Views are more amenable to learning.

The second set of experiments showcases the benefit of Zoom Views and confirms the

utility of the Survey View. Figures 7 and 8 depict the results. The format of these figures

mirrors that of Figures 5 and 6. The World Agent is excluded from these experiments.

Because the increased resolution does not affect the benchmarks, their performance values

are not displayed. Relative to the first set of experiments, the expected number of serviced

requests decreases for each agent. However, the Zoom (14.2) and Survey Agents (17.3) both

improve substantially over the Vehicle Agent (1.9). The training curves in Figure 8 emphasize

this difference. Across 180 million training epochs, the Vehicle Agent demonstrates only

minor performance gains whereas the other two agents exhibit marked improvement.

Theses results indicate that as view resolution increases, performance of the agents de-

creases. For the Vehicle Agent, quadrupling the number of pixels from 100-by-100 to 200-

by-200 quadruples the size of the input array for the deep Q-networks that underlie the
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Figure 7: Performance in the 200-by-200 playable area with 30 expected requests

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Epochs 1e8

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n 
Re

wa
rd

 in
 1

00
 E

pi
so

de
s

Vehicle
Zoom
Survey

Figure 8: Training curves for the 200-by-200 playable area with 30 expected requests
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Figure 9: Performance in the 100-by-100 playable area with 100 expected requests

categorical DQN method. As demonstrated by the training curves in Figure 8, this is a

more difficult learning task. The zoom feature included in the Zoom and Survey Agents

partially offsets the challenges of a larger playable area by maintaining the size of the view

at 84-by-84 pixels. This shifts the problem of learning across a larger playable area from

an issue of more complex input to one of additional spatial exploration. In the first set of

experiments, this difference is not evident because the Zoom View captures more than 70

percent of the playable area. In the second set of experiments, the Zoom View captures four

times less, not even 18 percent, and leads to substantially better performance.

In both the first and second sets of experiments, the performance of the Survey Agent

exceeds that of the other agents. This points to the minimap feature as an important part of

VRPSR game design. In contrast to the zoom feature, which provides high resolution locally,

the minimap feature offers a global approximation of the entire playable area. Combining

these features into one view provides the Survey Agent with detail to facilitate exploitation

and with a wide field of vision to promote exploration.

The contrast to conventional optimization-based approaches is also notable. While the

performance of our agents depends heavily on the granularity of the playable area, methods

like ReoptWOP and ReoptWP do not. Although agent performance is sensitive to view

resolution, as we show next, it is robust to increases in problem size.

The third set of experiments spotlights advantages of DRL when the problem size grows.

These experiments examine the performance of the Survey Agent alongside the benchmarks

when the expected number of requests more than triples from 30 to 100. Figure 9 depicts

the results. In contrast to the first and second sets of experiments, the expected number

of requests serviced by the Survey Agent (63.5) exceeds those of ReoptWOP (55.9) and

ReoptWP (57.3). As a percentage of expected total number of requests, the EVPI (92.9) is

comparable to its value with 30 customers.

Increasing the problem size highlights an important difference between the Survey Agent

and the benchmark policies. Because a larger number of expected requests leads to appre-
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ciably larger MILPs, the ReoptWOP and ReoptWP policies struggle to select good actions

within the allotted computing time of 3.6 minutes per MILP. Significant increases in comput-

ing time may lead to better policy performance, but this is not practical. The ReoptWOP

and ReoptWP policies operate online. Because operational limitations typically require de-

cisions to be made in a matter of minutes, this precludes the possibility of allocating more

computing time to solving MILPs on the fly. In contrast, the Survey Agent may be trained

offline for large periods of time without negative service consequences. Then, when it is

deployed, actions are selected in a matter of seconds. Thus, as problem size grows, DRL

yields better performance in typical operating conditions.

7 Game Over

A pixelated “Game Over” was the message that flashed across our CRT televisions when we

ran out of lives. We would start again, play until the next “Game Over,” and repeat until

our mothers told us our eyeballs would turn into squares if we played any longer. The same

“Game Over” also signaled the conclusion of a game. It marked completion of every level.

Sometimes this unlocked new content, and sometimes we loaded a new cartridge into the

console. In any case, as long as we kept playing, the game was never really over.

Game worlds, playable areas, zoom views, minimaps, deep-Q networks. These things

are not the end. This is only level one. New quests await us. Games, like optimization

problems, have always been about discovery of a winning policy. Whether that happens

through theorems and proofs, or by sitting an agent in front of a screen through millions of

“Game Overs,” the goal is the same. This paper shows that it is possible to represent the

VRPSR as a game and to train a neural network to play it better than some optimization

algorithms. To keep going down this road, we must find new connections between games and

optimization problems. Any number of vehicle routing problem variants could be gamified.

Visual representations of scheduling, production, and assortment problems could lead to new

designs. And a host of problems outside the operational domain might also be amenable to

gamification.

When we started this research, it felt a bit unusual. Our university coursework covered

methods to solve equations and construct algorithms. Game design wasn’t part of the

curriculum. In hindsight, however, joining our pixelated past with our pixelated present

seems natural. A joystick and a game console are just new ways to think about objectives,

constraints, and decision variables. Where we go from here depends on how you want to

play.
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