
Introduction to Stochastic Dynamic Programming

Justin C. Goodson

1 Modeling

A stochastic dynamic program is a model of an optimization problem that consists of the se-

quence decision, information, decision, information, decision, . . .

A Markov decision process (MDP) is a type of stochastic dynamic program. It consists of:

Decision Epochs

States

Actions

Random Information

Contributions
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Transition Function

Objective

The process proceeds as follows:

• Decisions are made at epochs 0, 1, . . . , K

• At epoch k the system occupies state sk

• In state sk, choose action xk from the set of feasible decisions X (sk)

• The expected contribution accrued is Ck(sk, xk)

• A realization of random information wk+1 is observed

• The transition to sk+1 = S(sk, xk, wk+1) is made

• Begin at initial state s0 and repeat until reaching a terminal state sK

The optimization proceeds as follows:

• A policy π is a sequence of decision rules, π = (Xπ
0 , X

π
1 , . . . , X

π
K)

• A decision rule Xπ
k (sk) : sk 7→ X (sk) maps states to feasible actions

• The set of all policies is Π

• The objective is to optimize the total expected contribution, conditional on the initial

state:

max
π∈Π

E

[
K∑
k=0

Ck (sk, X
π
k (sk))

∣∣∣s0]
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Draw a picture of the stochastic dynamic program.
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Example. “Same-Day Delivery with Heterogeneous Fleets of Drones and Vehicles,” Ulmer &

Thomas. Networks, 2018:72, 475-505.

Problem Description. A combined fleet of vehicles and drones deliver goods from a depot to

customers who dynamically request service over a finite operating horizon. Vehicles operate

across a road network, have unlimited capacity, and travel slowly. In contrast, drones travel

quickly in straight-line distances, can carry only one package, and must recharge between trips.

Requests follow a known spatial-temporal distribution, but their times and locations are un-

known before the request is made. Requests may be accepted or rejected. Accepted requests

must be serviced by a hard deadline and may be satisfied via drone or vehicle. The objective is

to maximizes the expected number of serviced requests.482 ULMER AND THOMAS
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FIGURE 1 Decision state and decision

3.2 Illustrative example
To illustrate the SDDPHF, Figure 1 presents the situation 2 hours (120 minutes) into an example shift. For the purpose of
example, we assume a Manhattan-style grid with vehicle travel times of 20 minutes and drone travel times of 10 minutes per
segment. To simplify this example, we further assume that drones and vehicles operate on the same grid. Though, in our
computational study in section 5, we assume that the drones fly on Euclidean paths while vehicles travel on an approximated
road network.

For the purposes of the example, the depot is located in the center of the service area. Customers are represented by circles.
We use dark circles to represent customers whose orders are already on a vehicle which is en route for delivery. We call such
customers “loaded customers.” Light circles represent customers who have placed an order, had the order accepted for delivery,
but which are not yet loaded onto a vehicle. We call such customers “known, but not yet loaded.” A new customer request in the
upper right corner of the service area is represented by the question mark. The delivery deadline of each customer is represented
by the adjacent box. We assume accepted orders must be delivered within 240 minutes of when the order is placed. For example,
Customer 4 has a deadline of 300. Thus, the customer requested at time 60.

The left-hand panel of Figure 1, represents the situation just before the decision of whether to accept or reject the new
customer request is made. The diamonds indicate vehicles and the triangles drones. In the example, two vehicles and two drones
are given. Both vehicles are on the road. The current planned routes are indicated by the dashed lines. The small dashes represent
the route for Vehicle 1. The large dashes show the route for Vehicle 2. We assume a delivery and a loading time of 10 minutes
each for both drones and vehicles. We assume a charging time of 20 minutes. The first vehicle will serve Customer 3, then
Customer 4, and then return to the depot at time 120+ 20+ 10+ 40+ 10+ 60= 260. The vehicle is then planned to directly load
the goods for Customer 8 and start the next tour to serve Customer 8 at time 260+ 10+ 40= 310 before it returns to the depot at
time 310+ 10+ 40= 360 and waits. The route plan for Vehicle 1 is defined as 𝜃(v1)= ((N, 260→ 260), (8, 310), (N, 360→ tmax)).
Note that the plan does not contain the loaded customers, but only the next arrival at the depot. Vehicle 2 will serve Customer
5 at time 140 and Customer 7 at time 210 before returning to the depot at time 280 and waiting. The planned route for Vehicle
2 is therefore 𝜃(v2)= ((N, 280→ tmax)). Both planned routes are feasible because all arrival times are lower than the according
deadline and the vehicles arrive before the deadline assuming a shift of 12 hours.

Drone 2 is currently idling at the depot. Drone 1 served a customer and is currently on its way to the depot. Hence, Drone
1 will be available in time 120+ 10+ 10+ 20= 140.

The center panel of Figure 1 represents the situation just after the decision has been made to accept the new request. We
assume that Customer 9 has been assigned to Drone 2. With this decision, the planned routes of the vehicles are unchanged.
With this assignment, Drone 2 is next available at 120+ 10+ 120+ 10+ 20= 280. The vehicles and drones now follow their
plans until the next customer requests.

3.3 Markov decision process model
In this section, we present our Markov decision process model for the SDDPHF. An MDP captures the stochasticity and
dynamism of a problem by modeling it as a sequence of states connected by decisions and transitions induced by an exogenous
stochastic process.

3.3.1 Decision point and state
In the SDDPHF, decisions are made when new customers request service. We call this time a decision point. We denote the time
of the kth decision point as tk, noting tk = t(Ck) where customer Ck is the customer requesting service. The state Sk at the kth
decision point summarizes all of the information that is necessary to make feasible decisions, compute rewards, and determine
transitions. For this problem, the state must summarize the information about the known, but not yet loaded, customer requests,
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3.2 Illustrative example
To illustrate the SDDPHF, Figure 1 presents the situation 2 hours (120 minutes) into an example shift. For the purpose of
example, we assume a Manhattan-style grid with vehicle travel times of 20 minutes and drone travel times of 10 minutes per
segment. To simplify this example, we further assume that drones and vehicles operate on the same grid. Though, in our
computational study in section 5, we assume that the drones fly on Euclidean paths while vehicles travel on an approximated
road network.

For the purposes of the example, the depot is located in the center of the service area. Customers are represented by circles.
We use dark circles to represent customers whose orders are already on a vehicle which is en route for delivery. We call such
customers “loaded customers.” Light circles represent customers who have placed an order, had the order accepted for delivery,
but which are not yet loaded onto a vehicle. We call such customers “known, but not yet loaded.” A new customer request in the
upper right corner of the service area is represented by the question mark. The delivery deadline of each customer is represented
by the adjacent box. We assume accepted orders must be delivered within 240 minutes of when the order is placed. For example,
Customer 4 has a deadline of 300. Thus, the customer requested at time 60.

The left-hand panel of Figure 1, represents the situation just before the decision of whether to accept or reject the new
customer request is made. The diamonds indicate vehicles and the triangles drones. In the example, two vehicles and two drones
are given. Both vehicles are on the road. The current planned routes are indicated by the dashed lines. The small dashes represent
the route for Vehicle 1. The large dashes show the route for Vehicle 2. We assume a delivery and a loading time of 10 minutes
each for both drones and vehicles. We assume a charging time of 20 minutes. The first vehicle will serve Customer 3, then
Customer 4, and then return to the depot at time 120+ 20+ 10+ 40+ 10+ 60= 260. The vehicle is then planned to directly load
the goods for Customer 8 and start the next tour to serve Customer 8 at time 260+ 10+ 40= 310 before it returns to the depot at
time 310+ 10+ 40= 360 and waits. The route plan for Vehicle 1 is defined as 𝜃(v1)= ((N, 260→ 260), (8, 310), (N, 360→ tmax)).
Note that the plan does not contain the loaded customers, but only the next arrival at the depot. Vehicle 2 will serve Customer
5 at time 140 and Customer 7 at time 210 before returning to the depot at time 280 and waiting. The planned route for Vehicle
2 is therefore 𝜃(v2)= ((N, 280→ tmax)). Both planned routes are feasible because all arrival times are lower than the according
deadline and the vehicles arrive before the deadline assuming a shift of 12 hours.

Drone 2 is currently idling at the depot. Drone 1 served a customer and is currently on its way to the depot. Hence, Drone
1 will be available in time 120+ 10+ 10+ 20= 140.

The center panel of Figure 1 represents the situation just after the decision has been made to accept the new request. We
assume that Customer 9 has been assigned to Drone 2. With this decision, the planned routes of the vehicles are unchanged.
With this assignment, Drone 2 is next available at 120+ 10+ 120+ 10+ 20= 280. The vehicles and drones now follow their
plans until the next customer requests.

3.3 Markov decision process model
In this section, we present our Markov decision process model for the SDDPHF. An MDP captures the stochasticity and
dynamism of a problem by modeling it as a sequence of states connected by decisions and transitions induced by an exogenous
stochastic process.

3.3.1 Decision point and state
In the SDDPHF, decisions are made when new customers request service. We call this time a decision point. We denote the time
of the kth decision point as tk, noting tk = t(Ck) where customer Ck is the customer requesting service. The state Sk at the kth
decision point summarizes all of the information that is necessary to make feasible decisions, compute rewards, and determine
transitions. For this problem, the state must summarize the information about the known, but not yet loaded, customer requests,
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Model. Review Section 3.3 to identify decision epochs, states, actions, information, contribu-

tions, transition function, and objective. Briefly describe these elements in words. Mathemati-

cal formalism is not required.
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2 Essential Theory

A stochastic dynamic program asks us to identify a policy with value

An exact solution method identifies an optimal policy in recursive fashion. We show that the

value of any policy can be calculated recursively. A backwards solution method for an optimal

policy then follows.

The expected total contribution from state sk if we follow policy π:

We can show that F π
k (sk) can be calculated recursively as

Proposition 1. F π
k (sk) = V π

k (sk).

The value of an optimal policy from state sk is F ⋆
k (sk) = maxπ∈Π F π

k (sk). We can show that

F ⋆
k (sk) may be calculated recursively as

This is called the value function. We can show that solving the value functions identifies the

value of an optimal policy.

Theorem 1. F ⋆
k (sk) = Vk(sk).
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Consequently, an optimal policy can be identified by choosing an action that satisfies the value

function:

This result leads to the Backward Induction algorithm for finite horizon stochastic dynamic

programs:

In many problems, it may be helpful to build the decision tree first. Begin with initial state s0,

then use the model to transition until the terminal states are reached.

Become familiar with the backward induction algorithm by identifying the expected value of

the shortest path through the network below. At each decision node (squares), you must choose

an arc. The choice results in a known reward plus a stochastic reward depending on which

outcome (circle nodes) is realized. Complete the calculations by identifying the value function

at nodes 4 and 1. The value at node 1 is the value of an optimal policy.

V16 = 0

V13 = 2 + 1(1) = 3

V12 = min{10 + 11(1), 11 + 1(1)} = min{21, 12} = 12

V11 = 9 + 11(1) = 20

V6 = min{3 + (5 + V12)(1/2) + (6 + V13)(1/2), 4 + (3 + V13)(1)}

= min{16, 10} = 10

V5 = min{6 + (8 + V11)(2/7) + (9 + V12)(5/7), 7 + (5 + V12)(1/2) + (6 + V13)(1/2)}

= min{6 + 23, 7 + 13} = 20
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3 Policies

To identify an optimal policy π⋆, solve the value function for every state:

Xπ⋆

k (sk) = argmax
x∈X (sk)

{
Ck(sk, xk) + E

[
Vk+1(sk+1)

∣∣∣sk, x]} .

Solving the value functions presents several challenges:
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Exact solution methods are computationally intractable for many problems of practical interest.

It is often difficult or impossible to fully characterize the structure of an optimal policy via

mathematical analysis. Often, we must resort to heuristic solution methods.

Recall the definition of a policy:

Within this definition, we can be very creative in choosing policies.

There are two fundamental strategies for creating policies, each of which can be further divided

into two classes, creating four classes of policies. The two strategies are:

General Strategy 1: Policy Search

Policy Class 1: Policy Function Approximations (PFAs)

PFAs are functions that map a state to a feasible action. Useful when you have a good idea of

how to make a decision and can design a function that captures the structure of the problem.

Policy Class 2: Cost Function Approximations (CFAs)

Select actions using a parameterized optimization model. Both objective and constraints may

depend on the parameters:

XCFA(s|θ) = argmax
x∈X (s|θ)

C̄k(s, x|θ)

CFAs are like parametric PFAs but with explicit optimization over actions.

General Strategy 2: Lookahead Approximations

Policy Class 3: Value Function Approximations (VFAs)

Policies that approximate the value of being in a state, typically via the value function.

9



Policy Class 4: Direct Lookahead Policies (DLAs)

DLAs establish the value of being in a state by optimizing over some approximation of what

lies ahead.

Policy Evaluation

No matter what policiy we design, we must evaluate it. The value of a policy is the expected

sum of its contributions:

F π
0 (s0) = E

[
K∑
k=0

Ck(sk, X
π
k (sk)

∣∣∣s0]

When F π
0 (s0) is difficult to calculate, we can use simulation to estimate it. Simulate w =

(w1, w2, . . . , wK+1), a realization of random information W = (W1,W2, . . . ,WK+1). Then, we

have the sample path (s0, X
π
0 (s0), w1), (s1, X

π
1 (s1), w2), . . . , (sK , X

π
K(sK), wK+1). Simulate

N sample paths and calculate

By the law of large numbers, F̂ π
0 (s0) is an unbiased and consistent estimator of F π

0 (s0).
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4 Case Study: Policy Function Approximation

“Same-Day Delivery with Heterogeneous Fleets of Drones and Vehicles,” Ulmer & Thomas.

Networks, 2018:72, 475-505.

Problem Description. A combined fleet of vehicles and drones deliver goods from a depot to

customers who dynamically request service over a finite operating horizon. Vehicles operate

across a road network, have unlimited capacity, and travel slowly. In contrast, drones travel

quickly in straight-line distances, can carry only one package, and must recharge between trips.

Requests follow a known spatial-temporal distribution, but their times and locations are un-

known before the request is made. Requests may be accepted or rejected. Accepted requests

must be serviced by a hard deadline and may be satisfied via drone or vehicle. The objective

is to maximizes the expected number of serviced requests. For more details, see the illustrative

example in Section 3.2.

Policy Function Approximation. Study Section 4 and describe the PFA. How are states

mapped to actions? Is the PFA a lookup table, a parametric function, or a nonparametric func-

tion? State the class of policies characterized by the PFA. How is the best policy within the

class identified?ULMER AND THOMAS 485
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FIGURE 2 Example for a threshold policy

time (𝜏D(N, C ≤ 𝜏) is preferably served by a vehicle. We write “preferably” because it is not always feasible to serve a customer
with the preferred mode. In the case that a customer can be feasibly served by only a truck or only a drone, the customer is
assigned to the feasible option regardless the threshold.

Figure 2 shows the example state presented in Figure 1 and a travel time threshold of 𝜏 = 60 minutes. The threshold is
indicated by the double line. Requests within this threshold are preferably served by vehicles and customers with longer travel
duration by drones. Customer C5 is such an example. The customer lies outside the threshold, but is assigned to a vehicle. This
occurs because no drone is available to serve the customer, but the customer can be feasibly served by a vehicle. In the example,
the new request lies outside this threshold and can be feasibly served by a drone. Therefore, the new customer is assigned to a
drone.

We define the set of threshold-dependent PFA policies as
Π̂ = {𝜋PFA

𝜏 ∶ 0 ≤ 𝜏}. (4)
To determine the best threshold parameter for a specific instance setting, we use sample average approximation using com-

mon random numbers and enumeration [20]. Specifically, we define a set of potential threshold values. Each potential threshold
value defines a policy 𝜋, and the set of all candidate policies is Π̂. For each instance setting, we then estimate the expected value
in Equation (3) for each policy 𝜋 using H sample path realizations 𝜔1, …, 𝜔H . For each instance, we select the PFA leading to
the highest average rewards. We denote this policy as 𝜋PFA. Mathematically, the optimization for a given instance setting is

𝜋PFA = arg max
𝜋∈Π̂

∑H
i=1

[∑K
k=0 R(Sk,X𝜋

k (Sk))|S0,𝜔i
]

H
. (5)

For our computational study, we define the potential threshold values minute-by-minute (𝜏 = 0, 1, …, 50) and evaluate each
policy using H = 1000 trials.

4.2 Routing and assignment procedure
As described in section 3.3, a decision contains two components, the mode of transportation and the resulting routing updates.
While the threshold generally determines the mode for each customer, we simultaneously need to determine a potential assign-
ment and routing update for each mode to check feasibility. Furthermore, the mode determined by the threshold is sometimes
not feasible. In that event, we check feasibility with regard to the alternate mode, and as long as there is one feasible option for
serving a customer, we accept the customer. These assignment and feasibility decisions can be time consuming, and we employ
heuristics to facilitate the real-time decision making necessary in SDD.

We serve customers assigned to drones in a first-in-first-out (FIFO) manner. Thus, we assign a customer to the first drone
that becomes available at the depot. Specifically, we assume that the new request is assigned to the drone with the earliest
availability. Let that drone be d. Then, we update the availability of d as 𝒜 x

k (d) = 𝒜k(d) + tD
N + 𝜏D(N,C) + 𝜏D(C,N) + tD

C + tD.
If two or more drones are available, we arbitrarily choose one. In the event that the availability of the drones precludes serving
C by 𝛿(C), then C cannot be served by a drone.

For vehicles, we require a fast assignment and routing heuristic because decisions need to be made in real-time. For this
purpose, we extend the efficient insertion heuristic presented in Azi et al. [5]. Recall that a route 𝜃 in a decision state contains the
next depot visit, the set of known, but not yet loaded customers to serve, and a final depot visit. The planned route is expressed
as:

𝜃 = ((N𝜃
1 , a(N

𝜃
1 ) → s(N𝜃

1 )), (C
𝜃
1 , a(C

𝜃
1)),… , (C𝜃

h , a(C
𝜃
h)), (N

𝜃
2 , a(N

𝜃
2 ) → tmax)).

For a new customer C, the insertion heuristic applies the following assignment and routing procedure. In the case that a
vehicle is currently free and idles at the depot, the routing heuristic selects this vehicle for delivery. If no vehicle is idling, the
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time (𝜏D(N, C ≤ 𝜏) is preferably served by a vehicle. We write “preferably” because it is not always feasible to serve a customer
with the preferred mode. In the case that a customer can be feasibly served by only a truck or only a drone, the customer is
assigned to the feasible option regardless the threshold.

Figure 2 shows the example state presented in Figure 1 and a travel time threshold of 𝜏 = 60 minutes. The threshold is
indicated by the double line. Requests within this threshold are preferably served by vehicles and customers with longer travel
duration by drones. Customer C5 is such an example. The customer lies outside the threshold, but is assigned to a vehicle. This
occurs because no drone is available to serve the customer, but the customer can be feasibly served by a vehicle. In the example,
the new request lies outside this threshold and can be feasibly served by a drone. Therefore, the new customer is assigned to a
drone.

We define the set of threshold-dependent PFA policies as
Π̂ = {𝜋PFA

𝜏 ∶ 0 ≤ 𝜏}. (4)
To determine the best threshold parameter for a specific instance setting, we use sample average approximation using com-

mon random numbers and enumeration [20]. Specifically, we define a set of potential threshold values. Each potential threshold
value defines a policy 𝜋, and the set of all candidate policies is Π̂. For each instance setting, we then estimate the expected value
in Equation (3) for each policy 𝜋 using H sample path realizations 𝜔1, …, 𝜔H . For each instance, we select the PFA leading to
the highest average rewards. We denote this policy as 𝜋PFA. Mathematically, the optimization for a given instance setting is

𝜋PFA = arg max
𝜋∈Π̂

∑H
i=1

[∑K
k=0 R(Sk,X𝜋

k (Sk))|S0,𝜔i
]

H
. (5)

For our computational study, we define the potential threshold values minute-by-minute (𝜏 = 0, 1, …, 50) and evaluate each
policy using H = 1000 trials.

4.2 Routing and assignment procedure
As described in section 3.3, a decision contains two components, the mode of transportation and the resulting routing updates.
While the threshold generally determines the mode for each customer, we simultaneously need to determine a potential assign-
ment and routing update for each mode to check feasibility. Furthermore, the mode determined by the threshold is sometimes
not feasible. In that event, we check feasibility with regard to the alternate mode, and as long as there is one feasible option for
serving a customer, we accept the customer. These assignment and feasibility decisions can be time consuming, and we employ
heuristics to facilitate the real-time decision making necessary in SDD.

We serve customers assigned to drones in a first-in-first-out (FIFO) manner. Thus, we assign a customer to the first drone
that becomes available at the depot. Specifically, we assume that the new request is assigned to the drone with the earliest
availability. Let that drone be d. Then, we update the availability of d as 𝒜 x

k (d) = 𝒜k(d) + tD
N + 𝜏D(N,C) + 𝜏D(C,N) + tD

C + tD.
If two or more drones are available, we arbitrarily choose one. In the event that the availability of the drones precludes serving
C by 𝛿(C), then C cannot be served by a drone.

For vehicles, we require a fast assignment and routing heuristic because decisions need to be made in real-time. For this
purpose, we extend the efficient insertion heuristic presented in Azi et al. [5]. Recall that a route 𝜃 in a decision state contains the
next depot visit, the set of known, but not yet loaded customers to serve, and a final depot visit. The planned route is expressed
as:

𝜃 = ((N𝜃
1 , a(N

𝜃
1 ) → s(N𝜃

1 )), (C
𝜃
1 , a(C

𝜃
1)),… , (C𝜃

h , a(C
𝜃
h)), (N

𝜃
2 , a(N

𝜃
2 ) → tmax)).

For a new customer C, the insertion heuristic applies the following assignment and routing procedure. In the case that a
vehicle is currently free and idles at the depot, the routing heuristic selects this vehicle for delivery. If no vehicle is idling, the
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Does it work? Look at Figure 4. Is the policy successful?
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5 Case Study: Cost Function Approximation

“Binary Driver-Customer Familiarity in Service Routing,” Ulmer, Nowak, Mattfeld, & Kamin-

ski. European Journal of Operational Research, 2020:286, 477-493.

Problem Description. Over a sequence of days, a provider serves customers with a fleet of

drivers. Drivers’ working time each day is limited. Customers request service intermittently.

Requests are known to the provider at the beginning of each day and the driver designs routes

to service these requests. Cost is determined by time required to traverse routes and service

customers. Service time depends on whether the assigned driver is familiar with the customer.

If the driver has previously serviced the customer, then this leads to a smaller service time.

Consequently, a routing decision made today can impact service times on subsequent days. For

example, consider a set of retail stores serviced from a central warehouse. Stores frequently

request delivery, but not every day. A driver becomes familiar with a customer by locating

the store, finding the correct unloading area, reporting to the store manager, unloading goods,

and completing delivery review. On the first visit, these steps take some time, but on subse-

quent visits, because the driver is familiar with the customer, the process proceeds faster. The

objective is to minimize expected routing and service costs.

Model.

• Decision Epochs. Decisions are made at the beginning of each day.

• States. A state consists of the set of active customers and the current familiarity between

drivers and customers. The familiarity matrix induces a service time matrix.

12



• Actions. An action is an assignment of active customers to drivers as well as the routing

of drivers. The set of feasible actions is defined by the constraints of an uncapacitated

VRP with route duration limits.

• Information. A set of new customer requests, revealed at the beginning of the day.

• Contribution. The sum of routing and service costs.

• Transition function. An action updates the familiarity matrix. New requests update the

set of active customers.

• Objective. Minimize expected sum of contributions.

Cost Function Approximation. The CFA is a myopic policy plus a cost correction term. The

contribution function in Equation (2) is augmented with the term

Iikp = (1− fikp)×M×
(

1

|F (i)|+ 1

)q

× nikp.

Study Section 4 and describe the CFA. What is the function of each part of Iikp? How are states

mapped to actions, meaning how does the CFA choose a feasible action from a given state? If

the CFA is parametric, how are the parameter values chosen?

Does it work? Look at the first bar in Figure 4. Is the policy successful? If yes, how can you

tell?
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6 Case Study: Value Function Approximation

“Meso-Parametric Value Function Approximation for Dynamic Customer Acceptances in De-

livery Routing,” Ulmer & Thomas. European Journal of Operational Research, 2020:285,

183-195.

Problem Description. A dispatcher receives delivery requests at random times and from ran-

dom locations across a geographic area serviced by a single vehicle. The dispatcher must

decide to accept or reject requests. If accepted, a request requires some amount of the vehicle’s

capacity and yields some revenue. The objective is to maximize expected revenue subject to

constraints on vehicle capacity and total service time.

Model.

• Decision Epochs. Decisions occur whenever a request for service is received. The num-

ber of epochs is a random variable.

• States. A state consists of the time that a request occurs; the set of already accepted

orders; the new order, its location, load, and revenue; and the current route plan.

• Actions. An action is a pair consisting of a decision to accept or reject the request and,

if accepted, a route plan to serve the request. Route plans must respect constraints on

capacity and duration.

• Information. The time and location of a new request.

• Contribution. The revenue associated with the new request, if it is accepted, otherwise

zero.

• Transition function. If an action accepts a request, then this updates the route plan and the

set of already accepted orders. Otherwise, these state elements do not change. Exogenous

information updates the state with information about the new request: time, location,

capacity, and revenue.

• Objective. Maximize expected revenue.
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Value Function Approximation. Study sections 4.1 and 4.2. Describe the authors’ general

strategy for approximating the value function. What is the difference between a parametric

approximation and a non-parametric approximation? What is the motivation to use both?

Application. Study Section 5.3. Describe the parametric and non-parametric value function

approximations for the Capacitated Customer Acceptance Problem with Stochastic Requests.

The illustration below partially depicts the non-parametric approximation.
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Does it work? Look at Table 1. Is the policy successful? If yes, how can you tell?
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7 Case Study: Direct Lookahead

“A Rollout Algorithm Framework for Heuristic Solutions to Finite-Horizon Stochastic Dy-

namic Programs,” Goodson, Thomas, & Ohlmann. European Journal of Operational Research,

2017:258, 216-229.

Problem Description. The objective of the Dynamic and Stochastic Multi-Compartment Knap-

sack Problem (DSMKP) is to pack a knapsack with items presented over a finite time horizon

such that total expected reward is maximized subject to constraints on compartmental capac-

ities and overall knapsack capacity. At each decision epoch, the decision maker is presented

with a random set of items, any subset of which may be considered for potential inclusion in

the knapsack. Although multiple items may be presented simultaneously, we assume at most

one item is available to each compartment at each epoch. Compartment capacities, item sizes,

and the reward for including a given subset of items in the knapsack are fixed and known. How-

ever, prior to the presentation of items, the set of items available at an epoch is known only in

distribution.

Model.

• Decision Epochs. A decision epoch occurs whenever the decision maker is presented

with a new set of items.

• States. The state includes remaining compartment capacities, remaining overall capacity,

and the subset of items available at the current epoch.

• Actions. An action is a choice to accept or reject each available item. Actions are feasible

if they respect compartmental and overall capacity constraints.

• Information. Whether an item is available to accept or reject for each compartment.

• Contribution. A fixed reward for accepting items into each compartment plus a bonus

for exceeding some threshold, e.g., a commission plus an incentive to exceed a sales

threshold.

• Transition function. Action selection updates compartment and overall capacities. New

information updates the available items.

• Objective. Maximize expected sum of rewards.
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Heuristic Policy. The lookahead mechanism is a heuristic policy. The heuristic policy maps a

given state to an action via a greedy construction procedure:

• Sort items in descending order of rewards.

• Randomly select a compartment from the first α percent compartments.

• Accept the item if doing so is feasible.

• Update capacities.

• Repeat until no more items can be accepted.

The choice of α determines how greedy versus random the heuristic is.

Rollout Policies. A rollout policy is a type of direct lookahead policy. The rollout policy

explicitly builds some portion of the decision tree, then uses the heuristic policy to approximate

the remainder. Figure 2 illustrates four ways to do this. Section 3.2 details each rollout policy.

Briefly explain how a one-step rollout policy works.
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Heuristics and Heuristic Policies. The paper refers to a “heuristic” and a “heuristic policy.”

Definition 2 in Section 2 formalizes the concept, but what is the practical distinction as it relates

to the DSMKP? There are three parts:

1. The heuristic is a method to identify the policy, e.g., Algorithm 6.

2. The policy is the mapping of state to action, e.g., the output of Algorithm 6.

3. The value of the policy must be calculated or estimated, e.g., the last paragraph of Section

5.2.

Each part has its own computational burden, thus it’s sometimes helpful to separate one from

the other.

Does it work? Look at Table 2. Are the rollout policies successful? If yes, how can you tell?
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8 Choosing a Policy Class

Use PFAs when you understand the structure of good policies.

Use CFAs when there is a reasonable deterministic approximation that can be optimized and

we have an intuitive idea of how to handle uncertainty.

Use VFAs when we need to capture the impact of a decision now on the future, and this value

can be expressed as a well-defined function.

Use DLAs when a decision now naturally requires a tentative plan for the future. Also, when

other classes fail.
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9 Dual Bounds

Motivation. How good is a policy? So far, a policy is good if it is provably optimal or if it

performs better than a benchmark. In the latter case, how much better can we do? Without a

dual bound, we cannot answer this question.

Dual Bound. A dual bound is some number z such that

Optimality Gap. When we don’t know the value of an optimal policy, we rely on the optimality

gap to gauge quality. Let V π(≤ V ⋆) be the value of our best heuristic policy:

A dual bound can be obtained by relaxing some part of the dynamic program, then optimally

solving the resulting problem.

Tractability. In theory, many dual bounds exist, but a dual bound is only helpful if it can be

identified, analytically or computationally.

Contribution Function Relaxation. Suppose we relax the contribution function such that
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Action Space Relaxation. Suppose we relax the action space such that

Convex DPs. A dynamic program is convex if

Perfect Information Relaxation. Another way to calculate a dual bound is to reveal uncer-

tainty before decisions are made. For example, seeing next week’s stock prices before buying,

or knowing how disease will spread before distributing vaccines. How does the decision tree

change in the perfect information scenario?
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Perfect information relaxation intuitively leads to a dual bound. It allows the decision maker to

select a policy in response to every outcome instead of a single policy that is evaluated across all

outcomes. To make the relationship precise, let W = (W1, . . . ,WK+1) be a random trajectory

of random information and let w be a realization of W . Augment the notation for contributions

to explicitly show dependence on W . The expected value with perfect information (EVPI) is a

dual bound on the value of an optimal policy:

A perfect information relaxation is often tractable because

Information Penalties. The EVPI is often a weak dual bound because with perfect foresight

we can make much better decisions. To improve the bound, we can punish the decision maker

for using information about the future. One way to construct an information penalty is via

approximate value functions. Let V̂k(sk, w) be the approximate value function along trajectory

w. For example, V̂k(sk, w) might be the value of a heuristic policy across w constructed with

any of the methods presented earlier. The penalty for selecting action xk in state sk when

the trajectory is w is the difference between value functions evaluated across trajectory w and

across all possible trajectories:
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Incorporating the penalty into the EVPI yields a tighter bound:

Information penalties are attractive when the inner optimization problem, which remains deter-

ministic, is not complicated by the inclusion of the penalty.

Recall the same-day delivery problem with drones and vehicles. How can the threshold policy

be used to create an information penalty?
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10 Learn More

Modeling and Policy Classes Chapters 9, 11, 12, 13, and 16 of

“Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential

Decisions” by Warren Powell (2022).

Theory.

“Markov Decision Processes: Discrete Stochastic Dynamic Programming,” by Martin Puter-

man (2005).

“Dynamic Programming and Optimal Control Vol. 1 and Vol. 2,” by Dimitri Bertsekas (2017).

Policy Function Approximation Example.

“Same-Day Delivery with Heterogeneous Fleets of Drones and Vehicles,” Ulmer & Thomas.

Networks, 2018:72, 475-505.

Cost Function Approximation Example.

“Binary Driver-Customer Familiarity in Service Routing,” Ulmer, Nowak, Mattfeld, & Kamin-

ski. European Journal of Operational Research, 2020:286, 477-493.

Value Function Approximation Example.

“Meso-Parametric Value Function Approximation for Dynamic Customer Acceptances in De-

livery Routing,” Ulmer & Thomas. European Journal of Operational Research, 2020:285,

183-195.

Direct Lookahead Example.

“A Rollout Algorithm Framework for Heuristic Solutions to Finite-Horizon Stochastic Dy-

namic Programs,” Goodson, Thomas, & Ohlmann. European Journal of Operational Research,

2017:258, 216-229.

Information Relaxations.

“Information Relaxations and Duality in Stochastic Dynamic Programs: A Review and Tuto-

rial,” Brown & Smith. Foundationas and Trends in Optimization, 2022:5:3, 246-339.

Action Space Relaxation.

“Relaxations of Weakly Coupled Stochastic Dynamic Programs,” Adelman & Merserau. Op-

erations Research, 2008:56(3), 712-727.
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